Le Châtelier’s Principle a Language, Methodological and Ontological Obstacle: An Analysis of General Chemistry Textbooks

Abstract

This study discusses how textbook educational approaches concerning Le Châtelier’s principle (LCP) may hinder student comprehension and prediction of chemical equilibrium disturbances. Firstly, after summarising students’ LCP erroneous assertions/explanations, a categorisation of the potential barriers that may originate student misunderstandings is performed. The discussed obstacles are the following: (a) language difficulties; (b) limited range of applicability; (c) official examinations and chemistry syllabi and (d) educational research. Then, it is examined how general chemistry textbooks’ authors deal with the evolution of chemical equilibria when they are disturbed. The different qualitative formulations of LCP provided in textbooks use mainly polysemic teleological vocabulary, which are difficult to understand in this context. Moreover, textbooks’ writers normally do not specify the conditions under which an equilibrium system is disturbed. In this textbook presentation, LCP is introduced as an easy and infallible rule, without limitations. Thus, several problematic perturbations reported in the chemical education research literature are not considered in these materials. Hence, this study concludes that their lacks and misleading use and application of LCP may certainly affect proper student understanding of the concepts related to chemical equilibrium disturbances.

This is a preview of subscription content, access via your institution.

References

  1. Adamson, A. W. (1973). A textbook of pysical chemistry. New York: Academic Press.

    Google Scholar 

  2. Akhmetov, N. S. (1983). General and inorganic chemistry. Moscow: Mir.

    Google Scholar 

  3. Akkus, H., Kadayifçi, H., Atasoy, B., & Geban, Ö. (2003). Effectiveness of instruction based on the constructivist approach on understanding chemical equilibrium concepts. Research in Science and Technological Education, 21, 209–227.

    Article  Google Scholar 

  4. Allsop, R. T., & George, N. H. (1984). Le Châtelier - A redundant principle? Education in Chemistry, 21, 54–56.

    Google Scholar 

  5. Ariès, E. (1904). La Statique Chimique basée sur les deux principes fondamentaux de la Thermodynamique. Hermann.

  6. Atkins, P., & de Paula, J. (2009). Elements of physical chemistry. Freeman.

  7. Aydeniz, M., & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers’ conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17, 111–119.

    Article  Google Scholar 

  8. Banerjee, A. C. (1991). Misconceptions of students and teachers in chemical equilibrium. International Journal of Science Education, 13, 487–494.

    Article  Google Scholar 

  9. Banerjee, A. C., & Power, C. N. (1991). The development of modules for the teaching of chemical equilibrium. International Journal of Science Education, 13, 355–362.

    Article  Google Scholar 

  10. Bever, M. B., & Rocca, R. (1951). Le principe de Le Châtelier et ses applications en métallurgie [Le Châtelier’s principle and its applications in metallurgy]. Revue de Matallurgie, 48, 363–368.

    Article  Google Scholar 

  11. Blackman, A., Bottle, S. E., Schmid, S., Mocerino, M., & Wille, U. (2016). Chemistry. Wiley.

  12. Bridgart, G. J., & Kemp, H. R. (1985). A limitation on the use of Le Châtelier’s principle. The Australian Science Teachers’ Journal, 31, 60–62.

    Google Scholar 

  13. Brookes, D. T., & Etkina, E. (2015). The importance of language in students’ reasoning about heat in thermodynamic processes. International Journal of Science Education, 37, 759–779.

    Article  Google Scholar 

  14. Butler, J. A. V. (1939). The fundamentals of chemical thermodynamics. McMillan.

  15. Canagaratna, S. G. (2003). Approaches to the treatment of equilibrium perturbations. Journal of Chemical Education, 80, 1211–1219.

    Article  Google Scholar 

  16. Cartwright, N. (1983). How the laws of physics lie. Clarendon Press.

  17. Chang, R., & Thoman, J. W. (2014). Physical chemistry for the chemical sciences. University Science Books.

  18. Cheung, D. (2009a). The adverse effects of Le Châtelier’s principle on teacher understanding of chemical equilibrium. Journal of Chemical Education, 86, 514–518.

    Article  Google Scholar 

  19. Cheung, D. (2009b). Using think-aloud protocols to investigate secondary school chemistry teachers’ misconceptions about chemical equilibrium. Chemistry Education Research and Practice, 10, 97–108.

    Article  Google Scholar 

  20. Cheung, D., Ma, H.-J., & Yang, J. (2009). Teachers’ misconceptions about the effects of addition of more reactants or products on chemical equilibrium. International Journal of Science and Mathematics Education, 7, 1111–1133.

    Article  Google Scholar 

  21. Considine, G. D. (2005). Van Nostrand’s Encyclopedia of Chemistry. Wiley.

  22. Corrales, J. A. (1974). Curso de Química Física. Aguilar.

  23. de Berg, K. C. (1996). The effect of temperature on the equilibrium concentration of gases: Some anomalies. Chemeda: Australian Journal of Chemical Education, 45, 2–7.

    Google Scholar 

  24. de Heer, J. (1957). The principle of Le Châtelier and Braun. Journal of Chemical Education, 34, 375–380.

    Article  Google Scholar 

  25. de Heer, J. (1958). La Châtelier, scientific principle or sacred cow. Journal of Chemical Education, 35(133), 135–136.

    Google Scholar 

  26. de Heer, J. (1986). Phenomenological thermodynamics with applications to chemistry. Prentice Hall.

  27. Demerouti, M., Kousathana, M., & Tsaparlis, G. (2004). Acid-base equilibria, Part I. Upper secondary students’ misconceptions and difficulties. Chemical Educator, 9, 122–131.

    Google Scholar 

  28. Driscoll, D. R. (1960). The Le Châtelier principle. Australian Science Teachers Journal, 6, 7–15.

    Google Scholar 

  29. Ehrenfest, P. (1911). Das princip von Le Chatelier-Braun und die Reziprozitátssátze der Thermodynamik. Zeitschrift für Physikalische Chemie, 77, 227–244.

    Google Scholar 

  30. Eltinge, E. M., & Roberts, C. W. (1993). Linguistic content analysis: A method to measure science as inquiry in textbooks. Journal of Research in Science Teaching, 30, 65–83.

    Article  Google Scholar 

  31. Epstein, P. E. (1937). Textbook of thermodynamics. Wiley.

  32. Etienne, M. R. (1933). Sur le déplacement de l’équilibre par variation de la masse. Comptes Rendus de l'Académie des Sciences, 196, 1887–1889.

    Google Scholar 

  33. Furió, C. J., & Ortiz, E. (1983). Persistencia de errores conceptuales en el estudio del equilibrio químico [Persistence of conceptual errors in the study of chemical equilibrium]. Enseñanza de las Ciencias, 2, 15–20.

    Google Scholar 

  34. Gabel, D. L. (1983). What high school chemistry texts do well and what they do poorly. Journal of Chemical Education, 60, 893–895.

    Article  Google Scholar 

  35. Gabel, D. L. (1999). Improving teaching and learning through chemistry education research: a look to the future. Journal of Chemical Education, 76, 548–554.

    Article  Google Scholar 

  36. Garnett, P. J., Garnett, P. J., & Hackling, M. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.

    Article  Google Scholar 

  37. Gegios, T., Salta, K., & Koinis, S. (2017). Investigating high-school chemical kinetics. The Greek chemistry textbook and students’ difficulties. Chemistry Education Research and Practice, 18, 151–168.

    Article  Google Scholar 

  38. Ghirardi, M., Marcheteti, F., Pettinari, C., Regis, A., & Roletto, E. (2015). Implementing an equilibrium law teaching sequence for secondary students to learn chemical equilibrium. Journal of Chemical Education, 92, 1008–1015.

    Article  Google Scholar 

  39. Glasstone, S. (1946). A textbook of physical chemistry. MacMillan.

  40. Gold, J., & Gold, V. (1984). Neither Le Châtelier's nor a principle? Chemistry in Britain, 20, 802–804.

    Google Scholar 

  41. Gold, J., & Gold, V. (1985). Le Châtelier’s principle and the laws of van't Hoff. Education in Chemistry, 22, 82–85.

    Google Scholar 

  42. Haigh, C. W. (1957). Le Châtelier’s principle dethroned. School Science Review, 39, 319–320.

    Google Scholar 

  43. Harrison, A. J., & Weaver, E. S. (1989). Chemistry. In A search to understand. Harcourt.

  44. Haydon, A. J. (1980). Le Châtelier -A statement of principle. School Science Review, 62, 318–320.

    Google Scholar 

  45. Jordaan, F. (1993). Disturbing Le Châtelier’s principle. Chemeda: The Australian Journal of Chemical Education, 38, 175–181.

    Google Scholar 

  46. Justi, R., & Gilbert, J. K. (2002). Models and modelling in chemical education. In J. Gilbert, O. De Jong, R. Justi, D. Treagust, & J. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 213–234). Kluwer.

  47. Kahveci, A. (2010). Quantitative analysis of science and chemistry textbooks for indicators of reform: A complementary perspective. International Journal of Science Education, 32, 1495–1519.

    Article  Google Scholar 

  48. Karpudewan, M., Treagust, D. F., Mocerino, M., Won, M., & Chandrasegaran, M. (2015). Investigating high school students’ understanding of chemical equilibrium concepts. International Journal of Environmental & Science Education, 10, 845–863.

    Google Scholar 

  49. Katz, L. (1961). A systematic way to avoid Le Châtelier's principle in chemical reactions. Journal of Chemical Education, 38, 375–377.

    Article  Google Scholar 

  50. Keenan, C. W., & Wood, J. H. (1966). General college chemistry. Harper & Row.

  51. Khine, M. S. (2013). Critical analysis of science textbooks. Evaluating instructional effectiveness. Springer.

  52. Kolobe, L., & Hobden, P. (2019). Instructional contextual contestations in the teaching of chemical equilibrium: A multiple-case study. African Journal of Research in Mathematics, Science and Technology Education, 23, 169–180.

    Article  Google Scholar 

  53. Kousathana, M., & Tsaparlis, G. (2002). Students’ errors in solving numerical chemical-equilibrium problems. Chemistry Education Research and Practice, 3, 5–17.

    Article  Google Scholar 

  54. Le Châtelier, H. L. (1884). Sur un énoncé général des lois des équilibres chimiques [On a general statement of the laws of chemical equilibrium]. Comptes Rendus de l'Académie des Sciences, 99, 786–789.

    Google Scholar 

  55. Le Châtelier, H. L. (1888a). Recherches expérimentales et théoriques sur les équilibres chimiques [Experimental and theoretical research on chemical equilibria]. Annales des Mines, 13, 157–382.

    Google Scholar 

  56. Le Châtelier, H. L. (1888b). Recherches expérimentales et théoriques sur les équilibres chimiques. Dunod.

  57. Le Châtelier, H. L. (1908). Leçons sur le carbone, la combustion et les lois chimiques. Dunod.

  58. Le Châtelier, H. L. (1933). Sur la loi du déplacement de l’équilibre chimique. Comptes Rendus Académie des Sciences, 196, 1557–1560; 1753–1757.

  59. Leenson, I. A. (2000). Approaching equilibrium in the N2O4-NO2 system: a common mistake in textbooks. Journal of Chemical Education, 77, 1652–1655.

    Article  Google Scholar 

  60. Levine, I. N. (2009). Physical chemistry. McGrawHill.

  61. Maeyer, J., & Talanquer, V. (2013). Making predictions about chemical reactivity: Assumptions and heuristics. Journal of Research in Science Teaching, 50, 748–767.

    Article  Google Scholar 

  62. Mavhunga, E. (2020). Revealing the structural complexity of component interactions of topic-specific PCK when planning to teach. Research in Science Education, 50, 965–986.

    Article  Google Scholar 

  63. McDonald, C. V. (2016). Evaluating junior secondary science textbook usage in Australian schools. Research in Science Education, 46, 481–509.

    Article  Google Scholar 

  64. Montagne, M. P. (1933). Sur la résolution graphique des problèmes d’équilibres chimiques homogènes entre trois constituants. Comptes Rendus de l'Académie des Sciences, 196, 928–930.

    Google Scholar 

  65. Nernst, W. (1904). Theoretical chemistry. From the standpoint of Avogadro’s rule and thermodynamics. MacMillan.

  66. Özmen, H. (2008). Determination of students’ alternative conceptions about chemical equilibrium: A review of research and the case of Turkey. Chemistry Education Research and Practice, 9, 225–233.

    Article  Google Scholar 

  67. Özmen, H., & Naseriazar, A. (2017). Effect of simulations enhanced with conceptual change texts on university students’ understanding of chemical equilibrium. Journal of the Serbian Chemical Society, 82, 1–16.

    Article  Google Scholar 

  68. Palacios, J. (1958). Termodinámica y Mecánica Estadística. Espasa-Calpe.

  69. Partington, J. R. (1949). An advanced treatise on Physical Chemistry. Longmans Green.

  70. Pauling, L. (1957). College chemistry. Company.

  71. Pedrosa, M. A., & Dias, M. H. (2000). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. Chemistry Education Research and Practice in Europe, 1, 227–236.

    Article  Google Scholar 

  72. Piquette, J. (2001). An analysis of strategies used by chemistry instructors to address student alternate conceptions in chemical equilibrium. PhD Thesis. University of Northern Colorado.

  73. Posthumus, K. (1933). The application of the van’t Hoff-Le Chatelier-Braun principle to chemical equilibria. Recueil des Travaux Chimiques des Pays-Bas, 52, 25–35.

    Article  Google Scholar 

  74. Posthumus, K. (1934). The application of the van't HofF-Le Chatelier-Braun Principle to Chemical Equilibria II. Recueil des Travaux Chimiques des Pays-Bas, 53, 308–311.

    Article  Google Scholar 

  75. Prigogine, I., & Defay, R. (1954). Chemical thermodynamics. London: Longmans Green.

    Google Scholar 

  76. Quílez, J. (1995). Una formulación para un principio: Análisis histórico del principio de Le Châtelier [A formulation for a principle: Historical analysis of Le Châtelier’s principle]. Revista Mexicana de Física, 41, 586–598.

  77. Quílez, J. (1997a). El principio de Le Chatelier como regla cualitativa: Un obstáculo epistemológico en el aprendizaje del equilibrio químico. Infancia y Aprendizaje, 78, 73–86.

  78. Quílez, J. (1997b). Superación de errores conceptuales del equilibrio químico mediante una metodología basada en el empleo exclusivo de la constante de equilibrio. Educación Química, 8(1), 46–54.

  79. Quílez, J. (1998). Persistencia de errores conceptuales relacionados con la incorrecta aplicación del principio de Le Châtelier [Persistence of conceptual errors related to the misapplication of Le Châtelier’s principle]. Educación Química, 9, 267–377.

  80. Quílez, J. (2002). Una propuesta curricular para la enseñanza de la evolución de los sistemas en equilibrio químico que han sido perturbados. Educación Química, 13(3), 170–187.

  81. Quílez, J. (2004). Changes in concentration and in partial pressure in chemical equilibria: students’ and teachers’ misunderstandings. Chemistry Education Research and Practice, 5(3), 281–300.

  82. Quílez, J. (2006). Análisis de problemas de equilibrio químico: errores y dificultades correspondientes a libros de texto, alumnos y profesores [Analysis of chemical equilibrium problems: errors and difficulties corresponding to textbooks, students and teachers]. Enseñanza de las Ciencias, 24, 219–240.

  83. Quílez, J. (2008). Students’ and teachers’ inability to transfer the molar concentration concept to aqueous equilibrium solutions. Chemical Educator, 13, 61–66.

  84. Quílez, J. (2009). From chemical forces to chemical rates: A historical/philosophical foundation for the teaching of chemical equilibrium. Science & Education, 18, 1203–1251.

  85. Quílez, J. (2012). First-year university chemistry textbooks’ misrepresentation of Gibbs energy. Journal of Chemical Education, 89(1), 87–93.

  86. Quílez, J. (2016). Kp does not play the role of the thermodynamic equilibrium constant, K: A discussed example on general chemistry textbooks’ misrepresentations. Chemistry: Bulgarian Journal of Science Education, 25, 815–825.

  87. Quílez, J. (2017). Acerca de la perturbación de equilibrios químicos, el control de variables y las predicciones de la evolución subsiguiente: Discusión de un ejercicio de pruebas de acceso a la universidad [About the disturbance of chemical equilibria, the control of variables and the predictions of the subsequent evolution: A discussion of an exercise corresponding to an official exam to access university]. Anales de Química, 113, 247–252.

  88. Quílez, J. (2019a). A categorisation of the terminological sources of student difficulties when learning chemistry. Studies in Science Education, 55(2), 121–167

  89. Quílez, J. (2019b). Do the equilibrium constants have units? A discussion on how general chemistry textbooks calculate and report the equilibrium constants. International Journal of Physics & Chemistry Education, 11, 73–83.

  90. Quílez, J. (2019c). A historical/epistemological account of the foundation of the key ideas supporting chemical equilibrium theory. Foundations of Chemistry, 21(2), 221–252.

  91. Quílez, J., & Sanjosé, V. (1995). Errores conceptuales en el estudio del equilibrio químico: Nuevas aportaciones relacionadas con la incorrecta aplicación del principio de Le Châtelier [Misconceptions in the study of chemical equilibrium: New contributions related to the application of Le Châtelier’s principle]. Enseñanza de las Ciencias, 13, 78–80.

  92. Quílez, J., & Sanjosé, V. (1996). El principio de Le Châtelier a través de la historia y su formulación didáctica en la enseñanza del equilibrio químico [Le Châtelier’s principle through history and its didactic formulation in the teaching of chemical equilibrium]. Enseñanza de las Ciencias, 14, 381–390.

  93. Quílez, J., & Solaz, J. J. (1995). Students’ and teachers’ misapplication of Le Châtelier’s principle. Implications for teaching chemical equilibrium. Journal of Research in Science Teaching, 32, 939–958.

  94. Quílez, J., & Solaz, J. J. (1996). Una formulación precisa, sencilla y cuantitativa para el principio de Le Châtelier [An accurate, simple and quantitative formulation for Le Châtelier’s principle]. Educación Química, 7, 202–208.

  95. Quílez, J., Solaz, J. J., Castelló, M., & Sanjosé, V. (1993). La necesidad de un cambio metodológico en la enseñanza del equilibrio químico. Limitaciones del principio de Le Châtelier. [The need for a methodological change in the teaching of chemical equilibrium: Le Châtelier’s principle limitations]. Enseñanza de las Ciencias, 11, 281–288.

  96. Quílez, J., Lorente, J., Sendra, F., & Enciso, E. (2009). Afinidad. Química-2. ECIR.

  97. Raveau, M. C. (1909). Les lois du déplacement de l'équilibre et le principle de Le Châtelier [The laws of displacement of equilibrium and Le Châtelier’s principle]. Journal of Physics, 8, 572–579.

    Google Scholar 

  98. Sánchez, G., & Valcárcel, V. (1999). Science teachers’ views and practices in planning for teaching. Journal of Research in Science Teaching, 36, 493–513.

    Article  Google Scholar 

  99. Scerri, E. R. (2019). Five ideas in chemical education that must die. Foundations of Chemistry, 21, 61–69.

    Article  Google Scholar 

  100. Senter, G. (1919). Outlines of physical chemistry. Methuen.

  101. Sjöström, J., Eilks, I., & Talanquer, V. (2020). Didaktik models in chemistry education. Journal of Chemical Education, 97, 910–915.

    Article  Google Scholar 

  102. Solaz, J. J., & Quílez, J. (1995). Thermodynamics and the Le Châtelier’s principle. Revista Mexicana de Física, 41, 128–138.

  103. Solaz, J. J., & Quílez, J. (1998). Unequivocal prediction of chemical equilibrium shift when changing the temperature at constant volume. Physics Education, 15, 29–33.

  104. Solaz, J. J., & Quílez, J. (2001). Changes in the extent of reaction in open equilibria. Chemistry Education Research and Practice in Europe, 2, 303–312.

  105. Song, Y., & Carheden, S. (2014). Dual meaning vocabulary (DMV) words in learning chemistry. Chemistry Education Research and Practice, 15, 128–141.

    Article  Google Scholar 

  106. Sözbilir, M. (2004). What makes physical chemistry difficult? Perceptions of Turkish chemistry undergraduates and lecturers. Journal of Chemical Education, 81, 573–578.

    Article  Google Scholar 

  107. Stavridou, H., & Solomonidou, C. (2000). Représentations et conceptions des élèves grecs par rapport au concept d’équilibre chimique. Didaskalia, 16, 107–134.

    Google Scholar 

  108. Stranks, D. R., Heffernan, M. L., Lee Dow, K. C., McTigue, P. T., & Withers, G. R. A. (1965). Chemistry: A structural view. Melbourne University Press.

  109. Taber, K. S. (1995). Prior learning as an epistemological block?: The octet rule - an example from science education, paper presented at the European Conference on Educational Research, September 1995, University of Bath - available via Education-line, at http://www.leeds.ac.uk/educol/

  110. Talanquer, V. (2006). Commonsense chemistry: A model for understanding students’ alternative conceptions. Journal of Chemical Education, 83, 811–816.

    Article  Google Scholar 

  111. Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29, 853–870.

    Article  Google Scholar 

  112. Talanquer, V. (2013). When atoms want. Journal of Chemical Education, 90, 1419–1424.

    Article  Google Scholar 

  113. Treptow, R. S. (1980). Le Châtelier’s principle. A re-examination and a method of graphic illustration. Journal of Chemical Education, 57, 417–420.

    Article  Google Scholar 

  114. Tsaparlis, G. (2014). The logical and psychological structure of physical chemistry and its relevance to the organization/sequencing of the major areas covered in physical chemistry textbooks. Chemistry Education Research and Practice, 15, 391–401.

    Article  Google Scholar 

  115. Tulip, D., & Cook, A. (1993). Teacher and student usage of science textbooks. Research in Science Education, 23, 302–307.

    Article  Google Scholar 

  116. Tyson, L., Treagust, D. F., & Bucat, R. B. (1999). The complexity of teaching and learning chemical equilibrium. Journal of Chemical Education, 76, 554–558.

    Article  Google Scholar 

  117. Uline, M. J., & Corti, M. J. (2006). The ammonia synthesis reaction: an exception to Le Châtelier’s principle and effects of nonideality. Journal of Chemical Education, 83, 138–144.

    Article  Google Scholar 

  118. Van Driel, J. H., & Gräber, W. (2002). The teaching and learning of chemical equilibrium. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical Education: Towards Research-based Practice (pp. 271–292). Kluwer Academic Publishers.

  119. Van’t Hoff, J. H. (1884). Études de Dynamique Chimique. Müller.

  120. Van’t Hoff, J. H. (1896). Studies in Chemical Dynamics. Williams & Norgate.

  121. Verschaffelt, J. E. (1938). Aanvullingen der Thermostatica. Antwerpen.

  122. Verschaffelt, J. E. (1945). Sur le déplacement de l’équilibre chimique par variation de masse. Bulletins de l’Académie Royale des Sciences de Belgique, 31, 201–213.

    Google Scholar 

  123. Viennot, L., & Rozier, L. (1994). Pedagogical outcomes of research in science education: Examples in mechanics and thermodynamics. In P. Fensham, R. Gunstone, & R. White (Eds.), The content of science. A constructivist approach to its teaching and learning (pp. 237–254). The Falmer Press.

  124. Vojíř, K., & Rusek, M. (2019). Science education textbook research trends: A systematic literature review. International Journal of Science Education, 41, 1496–1516.

    Article  Google Scholar 

  125. Voska, K. W., & Heikinnen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37, 160–176.

    Article  Google Scholar 

  126. Wheeldon, R., Atkinson, R., Dawes, A., & Levinson, R. (2012). Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions? Research in Science & Technological Education, 30, 1–24.

    Article  Google Scholar 

  127. Wheeler, A. E., & Kass, H. (1978). Student misconceptions in chemical equilibrium. Science Education, 62, 267–268.

    Article  Google Scholar 

  128. Wright, P. G. (1969). A Châtelerian infidelity. Education in Chemistry, 6, 9–18.

    Google Scholar 

  129. Yang, Z. (1993). The effect of pressure on the equilibrium of the N2O4-NO2 system, and its classroom demonstration. Journal of Chemical Education, 70, 94–95.

    Article  Google Scholar 

  130. Zang, C., Giacosa, N., & Chrobak, R. (2019). The scientific content in textbooks: a review in open access journals. Latin American Journal of Physics Education, 13, 3305.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Quílez.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Textbook sample

Grade-12 Spanish Chemistry textbooks

Carriedo, G. A., Fernández, J. M. and García, M. J. (2016), Química. Madrid: Paraninfo.

del Barrio, J. I., Sánchez, A., Bárcena, A. I. and Caamaño, A. (2016), Química, Madrid: SM.

Dou, J., Masjuan, M. D. and Costafreda, E. M. (2016), Química, Barcelona: Casals.

Fontanet, A. (2016), Química, Barcelona: VicensVives.

Grence, T. Guardia, C. and Menéndez, A. I. (2016), Química, Tres Cantos: Santillana.

Illana, J., Araque, J. A., Liébana, A. and Teijón, J. M (2016), Química, Madrid: Anaya.

Manuel, M. M. and Fajardo, J. C. (2016), Química, Zaragoza: Edelvives.

Pozas, A., Martín, R., Rodríguez, A. Ruiz, A. and Vasco, A. J. (2016), Química, Madrid: McGrawHill.

Sauret, M. (2016), Química, Madrid: Bruño.

Simón, B., García-Serra, J. and Romero, J. J. (2016), Química, Barcelona: Edebé.

Vidal, M. C. and Peña, J. (2016). Química. San Fernando de Henares: Oxford.

IB and A level Chemistry textbooks

Brown, C. and Ford, M. (2014), Higher Level Chemistry, Harlow: Pearson.

Bylikin, S., Horner, G., Murphy, B. and Tarcy, D. (2014), Chemistry for the IB Diploma, Oxford: Oxford University Press.

Owen, S. (2014), Chemistry for the IB Diploma, Cambridge: Cambridge University Press.

Ritchie, R. and Gent, D. (2015), A level Chemistry for OCR, Oxford: Oxford University Press.

Ryan, L. (2015), Advanced Chemistry for You, Oxford: Oxford University Press.

Ryan, L. and Norris, R. (2014), A Level Chemistry, Cambridge: Cambridge University Press.

Talbot, C., Harwood, R. and Coates, C. (2015), Chemistry for the IB Diploma, London: Horder Education.

First-year Chemistry textbooks

Brown, T. L., LeMay, H. E., Bursten, B. E., Murphy, C. J. and Woodward, P. M. (2012), Chemistry. The central science, Boston: Prentice Hall.

Chang, R. and Goldsby, H.A. (2016), Chemistry, New York: McGrawHill.

Gilbert, T., Kirss, R. V., Foster, N., Bretz, S. L. and Davies, G. (2018), Chemistry. The Science in Context, New York: Norton.

Jespersen, N. D., Brady, J. E. and Hyslop, A. (2012), Chemistry. The Molecular Nature of Matter, Hoboken: Wiley.

Kotz, J. C., Treichel, P. M., Townsend, J. R. and Treichel, D. A. (2015), Chemistry & Chemical Reactivity, Stamford: Cengage Learning.

Moore, J. W., Stanitski, C. L. and Jurs, P. C. (2011), Chemistry. The molecular science, Belmont: Brooks/Cole.

Petrucci, R. H., Herring, F. G., Madura, J. D. and Bissonnette, C. (2017), General Chemistry: Principles and Modern Applications, Pearson: Toronto.

Zumdahl, S. S. and DeCoste, D. J. (2017), Chemical Principles, Boston: Cengage Learning.

Appendix 2. Le Châtelier’s principle: textbook statements (italics added by the author of this study; also, translations from Spanish textbooks were made by this author. It was checked using back translation and eventually an official translator that had served in the Spanish administration for more than 30 years verified the initial translation made)

Spanish Grade-12 chemistry textbooks

If a chemical system in equilibrium is subjected to a change, the reaction of the equilibrium responds shifting in the sense that cancels or minimise that change till reaching a new equilibrium state (Carriedo et al., 2016).

If in a system in equilibrium it is modified any of the factors that influence it, the system evolves in the sense that tends to counteract that change (del Barrio et al., 2016).

When in a system in equilibrium a change of any of the variables determining it (concentration, pressure or temperature) occurs, the equilibrium shifts in the direction that tends to oppose to that change (Dou et al., 2016)

When a system in a state of equilibrium is subjected to a disturbance in the conditions in which it is, the system will shift towards a new state of equilibrium so that the readjustment partially counteracts the effect of the disturbance. (Fontanet, 2016)

When a system in equilibrium is subjected to a change in the concentration of the participant species, pressure or temperature, the system responds reaching a new equilibrium that partially counteracts the effect of the change produced (Grence et al., 2016).

If in a system in equilibrium is introduced an external disturbance that alters the equilibrium, this system will evolve in the sense that tends to counteract the disturbance produced. (Illana et al., 2016)

Any change in one of the factors of an equilibrium (concentration of substances, pressure and temperature) determines a rearrangement of the system so as to reduce the disturbance introduced (Manuel and Fajardo, 2016)

If in a system in equilibrium it is modified the value of any of the values affecting it (temperature, volume, pressure or concentration), the system evolves in a way that shifts in the sense that tends to counteract such a variation (Pozas et al., 2016).

When a variation of any factor affects a system in equilibrium, this equilibrium shifts in the sense that counteracts that variation (Sauret, 2016)

When a system in equilibrium experiments a transformation, this system evolves to reach a new equilibrium in the sense which opposes to the transformation suffered (Vidal and Peña)

If in a system in equilibrium an external factor (temperature, pressure or concentration) is altered, the system evolves to counteract that change and to establish a new equilibrium state (Simón et al., 2016).

IB Chemistry textbooks

A system at equilibrium when subjected to a change will respond in such a way as to minimize the effect of the change (Brown and Ford, 2014).

If a change is made to a system that is in equilibrium, the balance between the forward and the reverse reactions will shift to offset this change and return the system to equilibrium (Bylikin et al., 2014)

If a system at equilibrium is subjected to a change, the position of equilibrium will shift in order to minimise the effect of the change (Owen, 2014).

The system responds to negate the change by responding in the opposite way (Talbot et al., 2015).

British A level chemistry textbooks

When a system in equilibrium is subjected to an external change the system readjust itself to minimise the effect of the change (Ritchie and Gent, 2015).

The position of equilibrium shifts to try to cancel out any changes you introduce (Ryan, 2015)

If one or more factors that affect an equilibrium is changed, the position of equilibrium shifts in the direction that reduces (opposes) the change (Ryan and Norris, 2014)

First-year university chemistry textbooks

If a system at equilibrium is disturbed by a change in temperature, pressure, or a component concentration, the system will shift its equilibrium position so as to counteract the effect of the disturbance (Brown et al., 2012).

If an external stress is applied to a system at equilibrium, the system adjusts in such a way that the stress is partially offset as it tries to re-establish equilibrium (Chang and Goldsby, 2016).

If a system at equilibrium is perturbed (or subjected to an external stress), the position of the equilibrium shifts in either the forward or reverse direction as a response to reduce that stress (Gilbert et al., 2018).

If an outside influence upsets an equilibrium, the system undergoes a change in a direction that counteracts the disturbing influence and, if possible, returns the system to equilibrium (Jerpersen et al., 2012)

A change in any of the factors that determine the equilibrium conditions of a system will cause the system to change in such a manner as to reduce or counteract the effect of the change (Kotz et al., 2015).

If a system is at equilibrium and the conditions are changed so that it is no longer at equilibrium, the system will react to reach a new equilibrium in a way that partially counteracts the change (Moore et al., 2011).

When an equilibrium system is subjected to a change in temperature, pressure, or concentration of a reacting species, the system responds by attaining a new equilibrium that partially offsets the impact of the change (Petrucci et al., 2017).

If a change in conditions (a ”stress”) is imposed on a system at equilibrium, the equilibrium position will shift in a direction that tends to reduce that change in conditions (Zumdahl and DeCoste, 2017).

Classical Textbooks

If a constraint is applied to a system in equilibrium, the change which occurs is such that it tends to annul the constraint (Butler, 1939)

If a change occurs in one of the factors, such as temperature or pressure, under which a system is in equilibrium, the system will tend to adjust itself so as to annul, as far as possible, the effect of that change (Glasstone, 1946)

Any change in one of the variables that determine the state of a system in equilibrium causes a shift in the position of equilibrium in a direction that tends to counteract the change in the variable under consideration (Moore, 1963)

Every change of one of the factors of an equilibrium occasions a rearrangement of the system in such a direction that the factor in question experiences a change in a sense opposite to the original change (Nernst, 1904)

If a system in equilibrium is subjected to a constraint, whereby the equilibrium is modified, a change takes place, if possible, which partially annuls the constraint (Partington, 1949)

When one or more of the factors determining an equilibrium are altered, the equilibrium becomes displaced in such a way as to neutralize, as far as possible, the effect of the change (Senter, 1919)

If the conditions of a system, initially at equilibrium, are changed, the equilibrium will shift in such a direction as to tend to restore the original conditions (Pauling, 1957).

Other chemistry textbooks

A change in a variable that determines the state of an equilibrium system will cause a shift in the position of the equilibrium in a direction tending to counteract the effect of the change in the variable (Adamson, 1973)

If a system in equilibrium is subjected to an external effect, the balance will be upset in that direction of the process which will tend to weaken this effect (Akhmetov, 1983).

When a system at equilibrium is subjected to a disturbance, the composition of the system adjusts so as to tend to minimize the effect of the disturbance (Atkins & de Paula, 2009)

When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other factors involved in this shift, it would lead to a change of opposite sign in the parameter considered (Chang & Thoman, 2014)

Any system in chemical equilibrium undergoes, as a result of a variation in one of the factors governing equilibrium, a compensating change in a direction such that, had this change occurred alone it would have produced a variation of the factor considered in the opposite direction (Considine, 2005).

Every equilibrium system reacts to external actions, modifying itself in the sense of absorbing the effects produced in order to restore primitive conditions (Corrales, 1974).

A system forced out of equilibrium readjusts in a manner that tends to undo the change it has just suffered (Le Châtelier’s principle might be called an observation of the natural perversity of a disturbed system) (Harrison & Weaver, 1989)

When a stress is brought to bear on a system at equilibrium, the system tends to change so as to relieve the stress (Keenan & Wood, 1966).

If an external stress is applied to a system in equilibrium, the equilibrium will shift continuously in the direction indicated by the stress until the growing reaction in the system become equal to the external stress (Nekrasov, 1969).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quílez, J. Le Châtelier’s Principle a Language, Methodological and Ontological Obstacle: An Analysis of General Chemistry Textbooks. Sci & Educ (2021). https://doi.org/10.1007/s11191-021-00214-1

Download citation