Ainsworth, S. (2008). The educational value of multiple representations when learning complex scientific concepts. In John K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 191–208). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5267-5_9.
American Association for the Advancement of Science. (1993). Benchmarks for scientific literacy. Oxford University Press.
Bokulich, A. (2011). How scientific models can explain. Synthese, 180(1), 33–45. https://doi.org/10.1007/s11229-009-9565-1.
Brown, B. A., Reveles, J. M., & Kelly, G. J. (2005). Scientific literacy and discursive identity: a theoretical framework for understanding science learning. Science Education, 89(5), 779–802. https://doi.org/10.1002/sce.20069.
Article
Google Scholar
Buchholz, T. S., Volk, T. A., & Luzadis, V. A. (2007). A participatory systems approach to modeling social, economic, and ecological components of bioenergy. Energy Policy, 35(12), 6084–6094. https://doi.org/10.1016/j.enpol.2007.08.020.
Article
Google Scholar
Cartwright, N. (1999). The dappled world: a study of the boundaries of science. Cambridge University Press.
Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141–167. https://doi.org/10.1080/00461520.2011.587722.
Clement, J. (2008). The role of explanatory models in teaching for conceptual change. In S. Vosniadou (Ed.), Handbook of research on conceptual change. Lawrence Erlbaum Associates Inc.
COVID-19: The story behind the science. (n.d.). Retrieved December 7, 2020, from https://storybehindthescience.org/covid19.html.
DeBoer, G. E. (2000). Scientific literacy: another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L.
Dickes, A. C., & Sengupta, P. (2013). Learning natural selection in 4th grade with multi-agent-gased computational models. Research in Science Education, 43(3), 921–953. https://doi.org/10.1007/s11165-012-9293-2.
Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grade K-8. National Academies Press.
Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209–237. https://doi.org/10.1002/tea.21076.
Article
Google Scholar
Fairweather, J. (2010). Farmer models of socio-ecologic systems: application of causal mapping across multiple locations. Ecological Modelling, 221(3), 555–562. https://doi.org/10.1016/j.ecolmodel.2009.10.026
Article
Google Scholar
Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students’ model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895–921.
Ford, M. (2008). Grasp of practice as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17(2), 147–177. https://doi.org/10.1007/s11191-006-9045-7.
Fortus, D., Kubsch, M., Bielik, T., Krajcik, J., Lehavi, Y., Neumann, K., et al. (2019). Systems, transfer, and fields: Evaluating a new approach to energy instruction. Journal of Research in Science Teaching, 56(10), 1341–1361. https://doi.org/10.1002/tea.21556.
Frederiksen, J. R., & White, B. Y. (2002). Conceptualizing and constructing linked models: Creating coherence in complex knowledge systems. In P. Brna, M. Baker, K. Stenning, & A. Tiberghien (Eds.), The role of communication in learning to model (pp. 69–96). Erlbaum.
Galili, I. (2018). Scientific knowledge as a culture: A paradigm for meaningful teaching and learning of science. In M. R. Matthews (Ed.), History, philosophy and science teaching: New perspectives (pp. 203–233). Springer International Publishing. https://doi.org/10.1007/978-3-319-62616-1_8.
Gilbert, J. K., & Osborne, R. J. (1980). The use of models in science and science teaching. European Journal of Science Education, 2(1), 3–13. https://doi.org/10.1080/0140528800020103.
Gray, R., & Rogan-Klyve, A. (2018). Talking modelling: Examining secondary science teachers’ modelling-related talk during a model-based inquiry unit. International Journal of Science Education, 40(11), 1345–1366. https://doi.org/10.1080/09500693.2018.1479547.
Article
Google Scholar
Gray, S., Jordan, R., Crall, A., Newman, G., Hmelo-Silver, C., Huang, J., et al. (2017). Combining participatory modelling and citizen science to support volunteer conservation action. Biological Conservation, 208, 76–86. https://doi.org/10.1016/j.biocon.2016.07.037.
Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026. https://doi.org/10.1080/095006900416884.
Article
Google Scholar
Hmelo-Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cognitive Science, 28(1), 127–138. https://doi.org/10.1207/s15516709cog2801_7.
Article
Google Scholar
Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. Journal of the Learning Sciences, 16(3), 307–331. https://doi.org/10.1080/10508400701413401.
Article
Google Scholar
Jimenez-Aleixandre, M.-P. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171–1190. https://doi.org/10.1080/09500690210134857.
Article
Google Scholar
Joffe, M., & Mindell, J. (2006). Complex causal process diagrams for analyzing the health impacts of policy interventions. American Journal of Public Health, 96(3), 473–479. https://doi.org/10.2105/AJPH.2005.063693.
Article
Google Scholar
Ke, L., & Schwarz, C (2021). Supporting students’ meaningful engagement in scientific modeling through epistemological messages: A case study of contrasting teaching approaches. Journal of Research in Science Teaching, 58(3), 335–365. https://doi.org/10.1002/tea.21662.
Ke, L., Sadler, T. D., Zangori, L., & Friedrichsen, P. (2020a). Students’ perceptions of engagement in socio-scientific issue-based learning and their appropriation of epistemic tools for systems thinking. International Journal of Science Education, 42(8), 1339–1361. https://doi.org/10.1080/09500693.2020.17598432020.1759843.
Ke, L., Zangori, L., Sadler, T., & Friedrichsen, P. (2020b). Integrating scientific modeling and socio-scientific reasoning to promote scientific literacy. In W. Powell (Ed.), Socio-scientific issue-based instruction for scientific literacy development. IGI Global.
Kelter, J. (2020). Agent-based model of virus spread. Retrieved from https://www.jacobkelter.com/infection-model/.
Knuuttila, T. (2005). Models, representation, and mediation. Philosophy of Science, 72(5), 1260–1271. https://doi.org/10.1086/508124.
Article
Google Scholar
Kolstø, S. D. (2001). Scientific literacy for citizenship: tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310. https://doi.org/10.1002/sce.1011.
Article
Google Scholar
Krajcik, J., Reiser, B. J., Sutherland, L. M., & Fortus, D. (2012). IQWST: Investigating and questioning our world through science and technology. Activate Science.
Latour, B. (1999). Pandora’s hope: Essays on the reality of science studies. Cambridge, MA: Harvard University Press
Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94. https://doi.org/10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-C.
Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635–679. https://doi.org/10.3102/00028312041003635.
Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology (6th ed., Vol. 4). Wiley.
Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96(4), 701–724. https://doi.org/10.1002/sce.20475.
Article
Google Scholar
Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421–431.
Levinson, R. (2008). Promoting the role of the personal narrative in teaching controversial socio-scientific issues. Science & Education, 17(8), 855–871. https://doi.org/10.1007/s11191-007-9076-8.
Article
Google Scholar
Louca, L. T., & Zacharia, Z. C. (2012). Modeling-based learning in science education: Cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471–492. https://doi.org/10.1080/00131911.2011.628748.
Article
Google Scholar
Malvern, D. (2000). Mathematical models in science. In John K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 59–90). Springer. https://doi.org/10.1007/978-94-010-0876-1_4.
Manz, E. (2012). Understanding the codevelopment of modeling practice and ecological knowledge. Science Education, 96(6), 1071–1105. https://doi.org/10.1002/sce.21030.
Article
Google Scholar
Manz, E., Lehrer, R., & Schauble, L. (2020). Rethinking the classroom science investigation. Journal of Research in Science Teaching, 57(7), 1148–1174. https://doi.org/10.1002/tea.21625.
Article
Google Scholar
National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press.
Nersessian, N. J. (2008). Creating scientific concepts. MIT Press.
NGSS Lead States. (2013). Next generation science standards: for states, by states. National Academies Press.
Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130. https://doi.org/10.1080/09500693.2010.502191.
Passmore, C., Gouvea, J. S., & Giere, R. (2014). Models in science and in learning science: focusing scientific practice on sense-making. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171–1202). Springer Netherlands. http://link.springer.com/chapter/10.1007/978-94-007-7654-8_36.
Peel, A., Zangori, L., Friedrichsen, P., Hayes, E., & Sadler, T. (2019). Students’ model-based explanations about natural selection and antibiotic resistance through socio-scientific issues-based learning. International Journal of Science Education, 41(4), 510–532. https://doi.org/10.1080/09500693.2018.1564084.
Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Lawrence Erlbaum Associates.
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. https://doi.org/10.1002/tea.20009.
Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488. https://doi.org/10.1080/09500690600708717.
Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921. https://doi.org/10.1002/tea.20327.
Sadler, T. D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. M. (2006). Socioscience and ethics in science classrooms: Teacher perspectives and strategies. Journal of Research in Science Teaching, 43(4), 353–376. https://doi.org/10.1002/tea.20142.
Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391. https://doi.org/10.1007/s11165-006-9030-9.
Sadler, T. D., Foulk, J. A., & Friedrichsen, P. J. (2017). Evolution of a model for socio-scientific issue teaching and learning. International Journal of Education in Mathematics, Science and Technology, 5(1), 75–87. https://doi.org/10.18404/ijemst.55999.
Sadler, T. D., Friedrichsen, P., & Zangori, L. (2019). A framework for teaching for socio-scientific issue and model based learning (SIMBL). Educação e Fronteiras/Education and Borders, 9(25), 8–26.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311.
Stieff, M., Scopelitis, S., Lira, M. E., & Desutter, D. (2016). Improving representational competence with concrete models. Science Education, 100(2), 344–363. https://doi.org/10.1002/sce.21203.
Article
Google Scholar
Stratford, S. J., Krajcik, J., & Soloway, E. (1998). Secondary students’ dynamic modeling processes: Analyzing, reasoning about, synthesizing, and testing models of stream ecosystems. Journal of Science Education and Technology, 7(3), 215–234. https://doi.org/10.1023/A:1021840407112.
Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science-as-practice. Science Education, 98(3), 487–516. https://doi.org/10.1002/sce.21112.
Article
Google Scholar
Tidemand, S., & Nielsen, J. A. (2017). The role of socioscientific issues in biology teaching: From the perspective of teachers. International Journal of Science Education, 39(1), 44–61. https://doi.org/10.1080/09500693.2016.1264644.
Article
Google Scholar
Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012). Modelling mathematical reasoning in physics education. Science & Education, 21(4), 485–506. https://doi.org/10.1007/s11191-011-9396-6.
Article
Google Scholar
Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling & Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007.
Article
Google Scholar
Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104(12), 639–659. https://doi.org/10.5840/jphil20071041240.
Article
Google Scholar
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through constructing and testing computational theories—An embodied modeling approach. Cognition and Instruction, 24(2), 171–209. https://doi.org/10.1207/s1532690xci2402_1.
Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967. https://doi.org/10.1002/sce.20259.
Article
Google Scholar
Zangori, L., & Forbes, C. T. (2014). Scientific practices in elementary classrooms: Third-grade students’ scientific explanations for seed structure and function. Science Education, 98(4), 614–639. https://doi.org/10.1002/sce.21121.
Zangori, L., Peel, A., Kinslow, A., Friedrichsen, P., & Sadler, T. D. (2017). Student development of model-based reasoning about carbon cycling and climate change in a socio-scientific issues unit. Journal of Research in Science Teaching, 54(10), 1249–1273. https://doi.org/10.1002/tea.21404.
Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: theory, research and practice. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 697–726). Routledge.
Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377. https://doi.org/10.1002/sce.20048.