Skip to main content

Conceptual Profile of Substance

Representing Heterogeneity of Thinking in Chemistry Classrooms

Abstract

Teachers face challenges when building the concept of substance with students because tensions of meanings emerge from students’ daily life and canonical ideas developed in classrooms. A powerful tool to address learning, pedagogical, and research challenges is the conceptual profile theory. According to this theory, people employ various ways of conceptualizing the world to signify experiences. Conceptual profiles are models of the heterogeneity of modes of thinking and speaking about a given scientific concept which are used in a variety of contexts. To better understand the heterogeneity of thinking/speaking about substance, the present study aimed to answer: (1) What are the zones that constitute the conceptual profile of substance?; and (2) What ways of thinking and speaking about substance do teachers and students exhibit when engaged in a classroom formative assessment activity? The study adopted an inductive–deductive qualitative analysis approach to analyze secondary data from the history of chemistry, philosophy of chemistry, and student thinking, as well as primary data from student and teacher questionnaires and interviews in eight classrooms, and a formative assessment activity in four of these classrooms. Six conceptual profile zones were found through identifying sets of ontological, epistemological, and axiological commitments regarding each zone. Subsequently, the conceptual profile of substance was tested by employing it to re-analyze the formative assessment activity to represent high school students’ and teachers’ thinking about substance. The developed conceptual profile was found to be effective, thus prospectively useful to teachers, in representing the heterogeneity of thinking about substance in chemistry classrooms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. Chemical medicine: ἰατρός (iatro) was the Greek word for physician or medicine, and iatrochemistry was a school of thought in the sixteenth and seventeenth centuries with the goal of understanding medicine in terms of chemistry.

References

  • Aguiar, O., Sevian, H., & El-Hani, C. N. (2018). Teaching about energy. Application of the conceptual profile theory to overcome the encapsulation of school science knowledge. Science & Education, 27, 863–893.

  • Amaral, E. M. R., & Mortimer, E. F. (2001). Uma proposta de perfil conceitual para o conceito de calor. Revista Brasileira de Pesquisa em Educação em Ciências, 1(3), 1–16.

  • Amaral, E. M. R., Silva, J. R., & Sabino, J. D. (2018). Analysing process of conceptualization for students in lessons on substance from the emergence of conceptual profile zones. Chemistry Education Research and Practice, 19, 1010–1028.

    Article  Google Scholar 

  • Au, T. K. (1994). Developing an intuitive understanding of substance kinds. Cognitive Psychology, 27, 71–111.

    Article  Google Scholar 

  • Ayers, M. (1999). Locke: Epistemology and ontology. London: Routledge.

    Google Scholar 

  • Bachelard, G. (1973). La filosofía del no: Ensayo de una filosofía del nuevo espíritu científico. Buenos Aires: Amorrortu Editores.

    Google Scholar 

  • Banks, G., Clinchot, M., Cullipher, S., Huie, R., Lambertz, J., Lewis, R., et al. (2015). Uncovering chemical thinking in students' decision making: a fuel choice scenario. Journal of Chemical Education, 92, 1610–1618.

  • Bernal, A., & Daza, E. E. (2010). On the epistemological and ontological status of chemical reactions. International Journal for Philosophy of Chemistry, 16(2), 80–103.

    Google Scholar 

  • Block, N. (1980). Readings in philosophy of psychology. Cambridge: Harvard.

    Google Scholar 

  • Bretz, S. L., & Emenike, M. E. (2012). Hannah’s prior knowledge about chemicals: a case study of one fourth-grade child. School Science and Mathematics, 112(2), 99–108.

    Article  Google Scholar 

  • Broackes, J. (2006). Substance. Proceedings of the Aristotelian Society, 106(1), 133–168.

    Article  Google Scholar 

  • Broackes, J., & Hacker, P. (2004). Substance. Proceedings of the Aristotelian Society, Supplementary Volumes, 78, 41–63.

    Article  Google Scholar 

  • Chalmers, A. (2008). Atom and aether in nineteenth-century physical science. Foundations of Chemistry, 10(3), 157–166.

    Article  Google Scholar 

  • Chamizo, J. A. (2013). Technochemistry: one of the chemists’ ways of knowing. Foundations of Chemistry, 15(2), 157–170.

    Article  Google Scholar 

  • Chang, H. (2011). Compositionism as a dominant way of knowing in modern chemistry. History of Science, 49(3), 247–268.

    Article  Google Scholar 

  • Chi, M. T. H. (1992). Conceptual change within and across ontological categories: examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129–186). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: why some misconceptions are robust. Journal of the Learning Sciences, 14, 161–199.

    Article  Google Scholar 

  • Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: a theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43.

    Article  Google Scholar 

  • Cobb, J. B., & Griffin, D. R. (1976). Process theology: an introductory exposition. Philadelphia: The Westminster Press.

    Google Scholar 

  • Cooper, M. M., Williams, L. C., & Underwood, S. M. (2015). Student understanding of intermolecular forces: a multimodal study. Journal of Chemical Education, 92, 1288–1298.

    Article  Google Scholar 

  • Dawson, C. (2014). Towards a conceptual profile: rethinking conceptual mediation in the light of recent cognitive and neuroscientific findings. Research in Science Education, 44(3), 389–414.

    Article  Google Scholar 

  • de Vos, W., & Pilot, A. (2001). Acids and bases in layers: the stratal structure of an ancient topic. Journal of Chemical Education, 78(4), 494–499.

    Article  Google Scholar 

  • de Vos, W., & Verdonk, A. H. (1987). A new road to reactions, part 4: the substance and its molecules. Journal of Chemical Education, 64, 692–694.

    Article  Google Scholar 

  • Dickinson, D. K. (1987). The development of a concept of material kind. Science Education, 71(4), 615–628.

    Article  Google Scholar 

  • Dini, V., Sevian, H., Caushi, K., & Orduña Picón, R. (2020). Characterizing the formative assessment enactment of experienced science teachers. Science Education, 104(2), 290–325.

  • Driver, R., Asoko, H., Leach, J., Mortimer, E. F., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.

  • Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: a review and analysis. Studies in Science Education, 47(2), 123–182.

    Article  Google Scholar 

  • Earley, J. E. (2009). How chemistry shifts horizons: element, substance, and the essential. Foundations of Chemistry, 11(2), 65–77.

    Article  Google Scholar 

  • Earley, J. E. (2013). An invitation to chemical process philosophy. In J. P. Llored (Ed.), The philosophy of chemistry: practices, methodology and concepts (pp. 617–627). Newcastle upon Tyne: Cambridge scholars publishing.

    Google Scholar 

  • Evans, M. (2013). Reliability and validity in qualitative research by teacher researchers. In E. Wilson (Ed.), School-based research: a guide for education students (pp. 143–156). London: Sage Publications Ltd..

    Google Scholar 

  • Fernández-González, M. (2013). Idealization in chemistry: pure substance and laboratory product. Science & Education, 22(7), 1723–1740.

    Article  Google Scholar 

  • Ferrater-Mora, J. (1965). Diccionario de Filosofía. Buenos Aires: Editorial Sudamericana.

    Google Scholar 

  • Freire, M., Talanquer, V., & Amaral, E. M. R. (2019). Conceptual profile of chemistry: a framework for enriching thinking and action in chemistry education. International Journal of Science Education, 41(5), 674–692.

    Article  Google Scholar 

  • Gelman, A. S. (2003). Essential child. Origin of essentialism in everyday thought. New York: Oxford University Press.

    Book  Google Scholar 

  • Gouvea, J., & Passmore, C. (2017). ‘Models of’ versus ‘models for’: towards an agent-based conception of modelling in the science classroom. Science & Education, 26, 49–63.

    Article  Google Scholar 

  • Gupta, A., Hammer, D., & Redish, E. F. (2010). The case for dynamic models of learners’ ontologies in physics. Journal of the Learning Sciences, 19(3), 285–321.

    Article  Google Scholar 

  • Hacker, P. (1979). Substance: the constitution of reality. Midwest Studies in Philosophy, 4(1), 239–261.

    Article  Google Scholar 

  • Hacker, P. (2004). Substance: things and stuffs. Proceedings of the Aristotelian Society, 78(1), 41–63.

    Article  Google Scholar 

  • Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3(4), 383–396.

    Article  Google Scholar 

  • Johnson, P. (2000). Children’s understanding of substances, part 1: recognizing chemical change. International Journal of Science Education, 22(7), 719–737.

    Article  Google Scholar 

  • Krnel, D., Watson, R., & Glažar, S. A. (1998). Survey of research related to the development of the concept of ‘matter’. International Journal of Science Education, 20(3), 257–289.

    Article  Google Scholar 

  • Krnel, D., Glažar, S. A., & Watson, R. (2003). The development of the concept of ‘matter’: a cross age study of how children classify materials. Science Education, 87, 621–639.

    Article  Google Scholar 

  • Krnel, D., Watson, R., & Glažar, S. A. (2005). The development of the concept of ‘matter’: a cross-age study of how children describe materials. International Journal of Science Education, 27(3), 367–383.

    Article  Google Scholar 

  • Liu, X., & Lesniak, K. (2006). Progression in children’s understanding of the matter concept from elementary to high school. Journal of Research in Science Teaching, 43(3), 320–347.

    Article  Google Scholar 

  • Lycan, G. W. (1981). Form, function, and feel. The Journal of Philosophy, 78(1), 24–50.

    Article  Google Scholar 

  • Mattos, C. R. (2014). Conceptual profile as a model of a complex world. In E. F. Mortimer, & C. N. El-Hani (Eds.), Conceptual profiles: A theory of teaching and learning scientific concepts (Vol. 42) (pp. 263–292). Dordrecht: Springer Science & Business Media.

  • Mortimer, E. F. (1995). Conceptual change or conceptual profile change? Science & Education, 4, 267–285.

  • Mortimer, E. F., & Wertsch, J. V. (2003). The architecture and dynamics of intersubjectivity in science classrooms. Mind, Culture, and Activity, 10(3), 230–244.

  • Mortimer, E. F., Scott, P., & El-Hani, C. N. (2012). The heterogeneity of discourse in science classrooms: the conceptual profile approach. In B. J. Fraiser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 231–246). Dordrecht: Springer Science & Business Media.

  • Mortimer, E. F., & El-Hani, C. N. (2014). Conceptual profiles: A theory of teaching and learning scientific concepts (Vol. 42). Dordrecht: Springer Science & Business Media.

  • Mortimer, E. F., & Amaral, L. O. F. (2014). Contributions of the sociocultural domain to build a conceptual profile model for molecule and molecular structure. In E. F. Mortimer, & C. N. El-Hani (Eds.), Conceptual profiles: A theory of teaching and learning scientific concepts (Vol. 42) (pp. 103–114). Dordrecht: Springer Science & Business Media.

  • Mortimer, E. F., El-Hani, C. N., Sepulveda, C., Amaral, E. M. R., Coutinho, F. A., & Silva, F. A. R. (2014). Methodological grounds of the conceptual profile research program. In E. F. Mortimer & C. N. El-Hani (Eds.), Conceptual profiles: A theory of teaching and learning scientific concepts (Vol. 42) (pp. 67–100). Dordrecht: Springer Science & Business Media.

  • Mortimer, E. F. (2000). Linguagem e formação de conceitos no ensino de ciências. Belo Horizonte: Editora da UFMG.

  • Ngai, C., & Sevian, H. (2017). Capturing chemical identity thinking. Journal of Chemical Education, 94, 137–148.

  • Ngai, C., Sevian, H., & Talanquer, V. (2014). What is this substance? What makes it different? Mapping progression in students’ assumptions about chemical identity. International Journal of Science Education, 36(14), 2438–2461.

  • Nordman, A. (2006). From metaphysics to metachemistry. In D. Baird, E. Scerri, & L. McIntyre (Eds.), Philosophy of chemistry (pp. 347–362). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Padilla, K., Ponce-de-León, A. M., Rembado, F. M., & Garritz, A. (2008). Undergraduate professors’ pedagogical content knowledge: the case of ‘amount of substance’. International Journal of Science Education, 30(10), 1389–1404.

    Article  Google Scholar 

  • Paneth, F. A. (1962a). The epistemological status of the chemical concept of element (I). The British Journal for the Philosophy of Science, 8(49), 1–14.

    Article  Google Scholar 

  • Paneth, F. A. (1962b). The epistemological status of the chemical concept of element (II). The British Journal for the Philosophy of Science, 8(50), 144–160.

    Article  Google Scholar 

  • Park, H. J. (2007). Components of conceptual ecologies. Research in Science Education, 37, 217–237.

    Article  Google Scholar 

  • Partington, J. R. (1948). The concepts of substance and chemical element. Chymia, 1, 109–121.

    Article  Google Scholar 

  • Renström, L., Andersson, B., & Marton, F. (1990). Students’ conceptions of matter. Journal of Educational Psychology, 82(3), 555–569.

    Article  Google Scholar 

  • Rozin, P. (2005). The meaning of “natural”—process more important than content. Psychological Science, 16, 652–658.

    Article  Google Scholar 

  • Salloum, S. L., & Boujaoude, S. (2008). Careful! It is H2O? Teachers’ conceptions of chemicals. International Journal of Science Education, 30(1), 33–64.

    Article  Google Scholar 

  • Schummer, J. (1998). The chemical core of chemistry. A conceptual approach. HYLE – International Journal of the Philosophy of Chemistry, 4, 129–162.

    Google Scholar 

  • Schummer, J. (2003). The notion of nature in chemistry. Studies in History and Philosophy of Science, 34, 705–736.

    Article  Google Scholar 

  • Sevian, H., Ngai, C., Szteinberg, G., Brenes, P., & Arce, H. (2015). Concepción de la identidad química en estudiantes y profesores de química: Parte I – La identidad química como base del concepto macroscópico de sustancia. Educación Química, 26(1), 13–20.

  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: a learning progression on chemical thinking. Chemistry Education Research and Practice, 15, 10–23.

  • Shand, J. (2003). Fundamentals of philosophy. London: Routledge.

    Google Scholar 

  • Shavelson, R. J., Young, D. B., Ayala, C. C., Brandon, P. R., Furtak, E. M., Ruiz-Primo, M. A., Tomita, M. K., & Yin, Y. (2008). On the impact curriculum-embedded formative assessment on learning: a collaboration between curriculum and assessment developers. Applied Measurement in Education, 21(4), 295–314.

    Article  Google Scholar 

  • Sikorski, T. R. (2019). Context-dependent “upper anchors” for learning progressions. Science & Education, 28(8), 957–981.

    Article  Google Scholar 

  • Silva, J. R., & Amaral, E. M. R. (2013). Proposta para um perfil conceitual de substância. Revista Brasileira de Pesquisa em Educação em Ciências, 53–72.

  • Smith, C., Carey, S., & Wiser, M. (1985). On differentiation: a case of the development of the concept of size, weight, and density. Cognition, 21, 177–237.

    Article  Google Scholar 

  • Solomonidou, C., & Stavridou, H. (2000). From inert object to chemical substance: students’ initial conceptions and conceptual development during an introductory experimental chemistry sequence. Science Education, 84(3), 382–400.

    Article  Google Scholar 

  • Stein, R. L. (2004). Towards a process philosophy of chemistry. HYLE – International Journal for Philosophy of Chemistry, 1, 5–22.

    Google Scholar 

  • Suppe, F. (1989). The semantic conception of theories and scientific realism. Champaign: University of Illinois Press.

    Google Scholar 

  • Talanquer, V. (2006). Commonsense chemistry: a model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811–816.

    Article  Google Scholar 

  • Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29(7), 853–870.

  • Talanquer, V. (2008). Students’s predictions about the sensory properties of chemical compounds: additive versus emergent frameworks. Science Education, 92(1), 96–114.

    Article  Google Scholar 

  • Talanquer, V. (2018). Progression in reasoning about structure–property relationships. Chemistry Education Research and Practice, 19, 998–1009.

    Article  Google Scholar 

  • van Brakel, J. (2014). Philosophy of science and philosophy of chemistry. HYLE – International Journal for Philosophy of Chemistry, 20, 11–57.

    Google Scholar 

  • Vogelezang, M. J. (1987). Development of the concept of ‘chemical substance’—some thoughts and arguments. International Journal of Science Education, 9(5), 519–528.

    Article  Google Scholar 

  • Vygotsky, L. S. (1987). Thinking and speech. In R. W. Rieber & A. S. Carton (Eds.), The collected works of L. S. Vygotsky (pp. 39–285). New York, NY: Plenum Press.

    Google Scholar 

  • Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Cambridge: Harvard University Press.

    Google Scholar 

  • Wertsch, J. V. (1991). A sociocultural approach to socially shared cognition. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 85–100). American Psychological Association.

  • Whitehead, A. N. (1978). In D. R. Griffin & D. W. Sherburne (Eds.), Process and reality. An essay in cosmology. New York: The free press (Original work published 1929).

    Google Scholar 

  • Wiser, M., & Smith, C. L. (2008). Learning and teaching about matter in grades K-8: when should the atomic-molecular theory be introduced? In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 205–239). New York: Routledge.

    Google Scholar 

  • Witt, C. (1989). Substance and essence in Aristotle. An interpretation of metaphysics VII–IX. Ithaca: Cornell University Press.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the teachers who welcomed us into their classrooms to observe, collect student work, and interview them and their students. The first and second authors (R.O.P. and H.S.) acknowledge the funding source that supported this work: United States National Science Foundation award DRL-1621228. Also, the third author (E. F. M.) acknowledges the funding source that supported this work: Conselho Nacional de Desenvolvimiento Científico e Tecnológico awards 305205/2015-3 and 437439/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Sevian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orduña Picón, R., Sevian, H. & Mortimer, E.F. Conceptual Profile of Substance. Sci & Educ 29, 1317–1360 (2020). https://doi.org/10.1007/s11191-020-00152-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-020-00152-4

Keywords

  • Substance
  • Conceptual profile theory
  • Ontological
  • Epistemological
  • And axiological commitments