Understanding Curved Spacetime

The Role of the Rubber Sheet Analogy in Learning General Relativity

Abstract

According to general relativity (GR), we live in a four-dimensional curved universe. Since the human mind cannot visualize those four dimensions, a popular analogy compares the universe to a two-dimensional rubber sheet distorted by massive objects. This analogy is often used when teaching GR to upper secondary and undergraduate physics students. However, physicists and physics educators criticize the analogy for being inaccurate and for introducing conceptual conflicts. Addressing these criticisms, we analyze the rubber sheet analogy through systematic metaphor analysis of textbooks and research literature, and present an empirical analysis of upper secondary school students’ use and understanding of the analogy. Taking a theoretical perspective of embodied cognition allows us to account for the relationship between the experiential and sensory aspects of the metaphor in relation to the abstract nature of spacetime. We employ methods of metaphor and thematic analysis to study written accounts of small groups of 97 students (18–19 years old) who worked with a collaborative online learning environment as part of their regular physics lessons in five classes in Norway. Students generated conceptual metaphors found in the literature as well as novel ones that led to different conceptions of gravity than those held by experts in the field. Even though most students showed awareness of some limitations of the analogy, we observed a conflict between students’ embodied understanding of gravity and the abstract description of GR. This conflict might add to the common perception of GR being counterintuitive. In making explicit strengths and weaknesses of the rubber sheet analogy and learners’ conceptual difficulties, our results offer guidance for teaching GR. More generally, these findings contribute to the epistemological implications of employing specific scientific metaphors in classrooms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    The original Norwegian “å se for seg” can be translated as “to visualize,” “to envision,” “to see in your mind’s eye” or more literally “to see in front of you.” In our translations, we chose the expression “to visualize.”

References

  1. Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., et al. (2016). Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116(6), 061102.

    Article  Google Scholar 

  2. Amin, T. G., Jeppsson, F., & Haglund, J. (2015). Conceptual metaphor and embodied cognition in science learning: introduction to special issue. International Journal of Science Education, 37(5–6), 745–758.

    Article  Google Scholar 

  3. Aubusson, P. J., Harrison, A. G., & Ritchie, S. M. (2006). Metaphor and analogy in science education (Vol. 30). Berlin: Springer.

    Google Scholar 

  4. Baldy, E. (2007). A new educational perspective for teaching gravity. International Journal of Science Education, 29(14), 1767–1788.

    Article  Google Scholar 

  5. Bandyopadhyay, A., & Kumar, A. (2010a). Probing students’ ideas of the principle of equivalence. European Journal of Physics, 32(1), 139–159.

    Article  Google Scholar 

  6. Bandyopadhyay, A., & Kumar, A. (2010b). Probing students’ understanding of some conceptual themes in general relativity. Physical Review Special Topics - Physics Education Research, 6(2), 020104.

    Article  Google Scholar 

  7. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77–101.

    Article  Google Scholar 

  8. Callin, N. P., Pålsgård, J., Stadsnes, R., & Tellefsen, C. W. (2012). ERGO Fysikk 2. Oslo: Aschehoug.

    Google Scholar 

  9. Casey, E. S. (1979). Imagining. Bloomington: Indiana University Press.

    Google Scholar 

  10. Chandler, M. (1994). Philosophy of gravity: intuitions of four-dimensional curved spacetime. Science & Education, 3(2), 155–176.

    Article  Google Scholar 

  11. Chen, Y.-C., Park S., & Hand, B. (2016). Examining the use of talk and writing for students’ development of scientific conceptual knowledge through constructing and critiquing arguments. Cognition and Instruction, 34(2), 100–147.

    Article  Google Scholar 

  12. Dimitriadi, K., & Halkia, K. (2012). Secondary students’ understanding of basic ideas of special relativity. International Journal of Science Education, 34(16), 2565–2582.

    Article  Google Scholar 

  13. diSessa, A. A. (1981). An elementary formalism for general relativity. American Journal of Physics, 49(1981), 401.

    Article  Google Scholar 

  14. Einstein, A. (1915). Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie [Fundamental Ideas of the General Theory of Relativity and the Application of this Theory in Astronomy]. Preussische Akademie Der Wissenschaften, Satzungsberichte, 1(1), 315.

  15. Einstein, A. (1917). Über die spezielle und die allgemeine Relativitätstheorie [Relativity: the special and general theory]. Braunschweig: Vieweg.

    Google Scholar 

  16. Farr, B., Schelbert, G., & Trouille, L. (2012). Gravitational wave science in the high school classroom. American Journal of Physics, 80(10), 898.

    Article  Google Scholar 

  17. Gentner, D., Bowdle, B., Wolff, P., & Boronat, C. (2001). Metaphor is like analogy. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.), The analogical mind: perspectives from cognitive science (pp. 199–253). Cambridge, MA: MIT.

    Google Scholar 

  18. Gilbert, J. (2004). Models and modelling: routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115–130.

    Article  Google Scholar 

  19. Gilbert, J. (Ed.). (2005). Visualization in science education. Visualization in science education Vol. 1. Dordrecht: Springer.

    Google Scholar 

  20. Gould, R. R. (2016). Why does a ball fall?: A new visualization for Einstein’s model of gravity. American Journal of Physics, 84(5), 396–402.

    Article  Google Scholar 

  21. Greene, B. (2010). The elegant universe. New York: W W Norton & Co Inc..

    Google Scholar 

  22. Haglund, J. (2017). Good use of a ‘bad’ metaphor—entropy as disorder. Science & Education, 26(3–4), 205–214.

    Article  Google Scholar 

  23. Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies: friend or foe. In A. G. Harrison & S. M. Ritchie (Eds.), Metaphor & analogy in science education (pp. 11–24). Dordrecht, Netherlands: Springer.

    Google Scholar 

  24. Hartle, J. B. (2005). General relativity in the undergraduate physics curriculum. American Journal of Physics, 14(2006), 9.

    Google Scholar 

  25. Henriksen, E. K., Bungum, B., Angell, C., Tellefsen, C. W., Frågåt, T., & Vetleseter Bøe, M. (2014). Relativity, quantum physics and philosophy in the upper secondary curriculum: challenges, opportunities and proposed approaches. Physics Education, 49(6), 678–684.

    Article  Google Scholar 

  26. Hentschel, K. (Ed.). (1998). The collected papers of Albert Einstein, Volume 8 (English) The Berlin Years: Correspondence, 1914–1918. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  27. Hesse, M. (1952). Operational definition and analogy in physical theories. British Journal for the Philosophy of Science, 2(8), 281–294.

    Article  Google Scholar 

  28. Hesse, M. (1953). Models in physics. British Journal for the Philosophy of Science, 4, 98–214.

    Google Scholar 

  29. Jerstad, P., Sletbak, B., Grimenes, A. A., Renstrøm, R., Holm, O. B., & Nymo, M. (2014). RomStoffTid Fysikk 2. Oslo: Cappelen Damm.

    Google Scholar 

  30. Kampourakis, K. (2016). The bad use of metaphors and the use of bad metaphors. Science & Education, 25(9–10), 947–949.

    Article  Google Scholar 

  31. Kapon, S., & DiSessa, A. A. (2012). Reasoning through instructional analogies. Cognition and Instruction, 30(3), 261–310.

    Article  Google Scholar 

  32. Kaur, T., Blair, D., Moschilla, J., Stannard, W., & Zadnik, M. (2017a). Teaching Einsteinian physics at schools: models and analogies—Part 1 (Manuscript draft). Retrieved from http://arxiv.org/abs/1704.02058

  33. Kaur, T., Blair, D., Moschilla, J., Stannard, W., & Zadnik, M. (2017b). Teaching Einsteinian physics at schools: Part 3, review of research outcomes. Physics Education, 52(6). https://doi.org/10.1088/1361-6552/aa83dd

    Article  Google Scholar 

  34. Kersting, M., Henriksen, E. K., Bøe, M. V., & Angell, C. (2018). General relativity in upper secondary school: design and evaluation of an online learning environment using the model of educational reconstruction. Physsical Review Physics Education Research, 14(1), 010130–1–010130-18. https://doi.org/10.1103/PhysRevPhysEducRes.14.010130.

    Article  Google Scholar 

  35. Kind, P. M., & Kind, V. (2007). Creativity in science education: perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1–37.

    Article  Google Scholar 

  36. Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & Van Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education: a literature review. Physical Review Physics Education Research, 13(1), 010109-21. https://doi.org/10.1103/PhysRevPhysEducRes.13.010109.

    Article  Google Scholar 

  37. Lakoff, G., & Johnson, M. (2003). Metaphors we live by (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  38. Lancor, R. (2014a). Using metaphor theory to examine conceptions of energy in biology, chemistry, and physics. Science & Education, 23(6), 1245–1267.

    Article  Google Scholar 

  39. Lancor, R. (2014b). Using student-generated analogies to investigate conceptions of energy: a multidisciplinary study. International Journal of Science Education, 36(1), 1–23.

    Article  Google Scholar 

  40. Lemke, J. L. (1990). Talking science: language, learning, and values. Norwood, New Jersey: Ablex Publishing Corporation.

    Google Scholar 

  41. Levrini, O. (2014). The role of history and philosophy in research on teaching and learning of relativity. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 157–181). Dordrecht: Springer.

    Google Scholar 

  42. Levrini, O., & DiSessa, A. A. (2008). How students learn from multiple contexts and definitions: proper time as a coordination class. Physical Review Special Topics - Physics Education Research, 4(1), 1–18..

  43. Mach, E. (1893). In T. J. McCormack (Ed.), The science of mechanics. Chicago: Open Court Publishing Company.

    Google Scholar 

  44. Middleton, C. A., & Weller, D. (2016). Elliptical-like orbits on a warped spandex fabric: a theoretical/experimental undergraduate research project. American Journal of Physics, 84(4), 284–292.

    Article  Google Scholar 

  45. Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2012). Gesture and imagination on the constitution and uses of phantasms. Gesture, 12(2), 130–165.

    Article  Google Scholar 

  46. Niebert, K., & Gropengießer, H. (2014). Understanding the greenhouse effect by embodiment—analysing and using students’ and scientists’ conceptual resources. International Journal of Science Education, 36(2), 277–303.

    Article  Google Scholar 

  47. Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: a theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(1), 849–877.

    Article  Google Scholar 

  48. Pitts, M., Venville, G., Blair, D., & Zadnik, M. (2014). An exploratory study to investigate the impact of an enrichment program on aspects of Einsteinian physics on year 6 students. Research in Science Education, 44(3), 363–388.

    Article  Google Scholar 

  49. Poincaré, H. (1898). La mesure du temps [The measure of time]. Revue de Métaphysique et de Morale, 6(1), 1–13.

  50. Price, R. H. (2016). Spatial curvature, spacetime curvature, and gravity. American Journal of Physics, 84(8), 588–592.

    Article  Google Scholar 

  51. Rasmussen, I., & Ludvigsen, S. (2010). Learning with computer tools and environments: a sociocultural perspective. In C. W & J. K. S. K. Littleton (Eds.), International handbook of psychology in education (pp. 399–435). Bingley, UK: Emerald.

    Google Scholar 

  52. Reichenbach, H. (1928). Philosophie der Raum-Zeit-Lehre [The philosophy of space and time]. New York: Dover Publications.

    Google Scholar 

  53. Roth, W. M., & Lawless, D. (2002). Science, culture, and the emergence of language. Science Education, 86(3), 368–385.

    Article  Google Scholar 

  54. Russell, B. (1925). In K.-P. Trench & Trubner (Eds.), ABC of relativity. London: The ABC of Relativity.

    Google Scholar 

  55. Sartre, J.-P. (2004). The imaginary. A phenomenological psychology of the imagination. New York: Routledge.

    Google Scholar 

  56. Schmitt, R. (2005). Systematic metaphor analysis as a method of qualitative research. The Qualitative Report, 10(2), 358–394.

    Google Scholar 

  57. Schön, D. A. (1979). Generative metaphor: a perspective problem-setting in social policy. In A. Ortony (Ed.), Metaphor and thought (pp. 254–283). Cambridge, England: Cambridge University Press.

    Google Scholar 

  58. Scott, P., & Mortimer, E. (2005). Meaning making in high school science classrooms: a framework for analysing meaning making interactions. Research and the Quality of Science Education, 7, 395–406.

    Article  Google Scholar 

  59. Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: a historical case study. Science & Education, 16, 835–848.

    Article  Google Scholar 

  60. Stadermann, H. K. E., & Goedhart, M. J. (2017). Comparison and analysis of quantum physics in secondary school curricula of 13 different countries. Presentation at GIREP 2017, Dublin, Ireland.

  61. Stannard, W., Blair, D., Zadnik, M., & Kaur, T. (2017). Why did the apple fall? A new model to explain Einstein’s gravity. European Journal of Physics, 38(1), 015603.

    Article  Google Scholar 

  62. Steier, R., & Kersting, M. (n.d.). Metaimagining and embodied conceptions of spacetime (Manuscript under Review).

  63. Stinner, A. (2003). Scientific method, imagination and the teaching of physics. Physics World, 59(6), 335–346.

    Google Scholar 

  64. The Norwegian Directorate for Education and Training. (2006). Physics—programme subject in programmes for specialization in general studies. Retrieved from http://www.udir.no/kl06/fys1-01/Hele/Kompetansemaal/fysikk-2/?lplang=eng

  65. Thorne, K. (2009). Warping spacetime. In G. W. Gibbons, E. P. S. Shellard, & S. J. Rankin (Eds.), The future of theoretical physics and cosmology: celebrating Stephen Hawking’s contributions to physics. Cambridge: Cambridge University Press.

    Google Scholar 

  66. Treagust, D. F., & Duit, R. (2015). On the significance of conceptual metaphors in teaching and learning science: Commentary on Lancor; Niebert and Gropengiesser; and Fuchs. International Journal of Science Education, 37(5–6), 958–965.

    Article  Google Scholar 

  67. Vailati, E. (1997). Leibniz and Clarke: a study of their correspondence. In Oxford and New York: Oxford University Press.

    Google Scholar 

  68. Velentzas, A., & Halkia, K. (2013). The use of thought experiments in teaching physics to upper secondary-level students: two examples from the theory of relativity. International Journal of Science Education, 35(18), 3026–3049.

    Article  Google Scholar 

  69. Viereck, G. S. (1929). What life means to Einstein. The Saturday Evening Post. http://doi.org/http://www.saturdayeveningpost.com/wp-content/uploads/satevepost/what_life_means_to_einstein.pdf

  70. Vygotsky, L. (1962). Thought and language. Cambridge: M.I.T. Press.

    Google Scholar 

  71. Watkins, T. R. (2014). Gravity & Einstein: assessing the rubber sheet analogy in undergraduate conceptual physics (Master Thesis). Boise State University.

  72. Zahn, C., & Kraus, U. (2014). Sector models—a toolkit for teaching general relativity. Part 1: curved spaces and spacetimes. European Journal of Physics, 35, 055020.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Research Council of Norway (ProjectNo. 246723) and the Olav Thon Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magdalena Kersting.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kersting, M., Steier, R. Understanding Curved Spacetime. Sci & Educ 27, 593–623 (2018). https://doi.org/10.1007/s11191-018-9997-4

Download citation