Skip to main content

Scientism and Scientific Thinking

A Note on Science Education

Abstract

The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education’s most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.

This is a preview of subscription content, access via your institution.

References

  • American Association for the Advancement of Science (AAA) - Project 2061 (1994). Benchmarks for science literacy. New York: Oxford University Press.

  • Battaly, H. (2006). Teaching intellectual virtues: applying virtue epistemology in the classroom. Teaching Philosophy, 29(3), 191–222.

    Article  Google Scholar 

  • Bergman, G., Borda, C. S., Ergazaki, M., Harlen, W., Kotul’áková, K., Pascucci, A., Schoultz, J., Transetti, C., & Zoldozova, K. (2012). Tools for enhancing inquiry in Science Education. http://fibonacci.uni-bayreuth.de/index.php?eID=tx_nawsecuredl&u=0&file=fileadmin/Dokumente/startingpackage/companion/tools_for_enhancing_inquiry_in_science_education.pdf&t=1501243995&hash=fb4ee996b138d0c7958246d0e8220901. Accessed 25 July 2017.

  • Bridges, D., & Smith, R. (Eds.). (2007). Philosophy, methodology and educational research. New Jersey: Willey-Blackwell.

    Google Scholar 

  • Bruguière, C., Tiberghien, A., & Clément, P. (Eds.). (2014). Topics and trends in current science education (pp. 37–54). New York: Springer.

    Google Scholar 

  • Brush, S. G. (1989). History of science and science education. Interchange, 20(2), 60–70.

    Article  Google Scholar 

  • Burgh, G., & Nichols, K. (2012). The parallels between philosophical inquiry and scientific inquiry: implications for science education. Educational Philosophy and Theory, 44(10), 1045–1059.

    Article  Google Scholar 

  • Bybee, R. W., & Ben-Zvi, N. (1998). Science curriculum: transforming goals to practices. In K. G. Tobin & B. J. Fraser (Eds.), International handbook of science education (Vol. 2, pp. 487–498). Norwell: Kluwer Academic.

    Chapter  Google Scholar 

  • Carter, J. A. (2016). Robust virtue epistemology as anti-luck epistemology: a new solution. Pacific Philosophical Quarterly, 97(1), 140–155.

    Article  Google Scholar 

  • Chalmers, A. F. (2013). What is this thing called science? Indianapolis: Hackett Publishing.

    Google Scholar 

  • Chen, S. (2006). Development of an instrument to assess views on nature of science and attitudes toward teaching science. Science Education, 90(5), 803–819.

    Article  Google Scholar 

  • Conant, J. B. (1951). Science and common sense. New Haven: Yale University Press.

    Google Scholar 

  • Crick, F. (1996). Visual perception: rivalry and consciousness. Nature, 379(6565), 485–486.

    Article  Google Scholar 

  • Damasio, A. R. (1994). Descartes’ error: emotion, rationality and the human brain. New York: Avon Books.

    Google Scholar 

  • Davson-Galle, P. (1994). Philosophy of science and school science. Educational Philosophy and Theory, 26(1), 34–53.

    Article  Google Scholar 

  • Davson-Galle, P. (2004). Philosophy of science, critical thinking and science education. Science & Education, 13(6), 503–517.

    Article  Google Scholar 

  • De Ridder, J. (2014). Science and scientism in popular science writing. Social Epistemology Review and Reply Collective, 3(12), 23–39.

    Google Scholar 

  • De Waal, F. (2009). Primates and philosophers: how morality evolved. New Jersey: Princeton University Press.

  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.

    Article  Google Scholar 

  • Duschl, R. A. (2008). Quality argumentation and epistemic criteria. In Erduran & Jiménez-Aleixandre (Eds.), Argumentation in science education (pp. 159–175). New York: Springer.

    Google Scholar 

  • Eflin, J. T., Glennan, S., & Reisch, G. (1999). The nature of science: a perspective from the philosophy of science. Journal of Research in Science Teaching, 36(1), 107–116.

    Article  Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education: perspectives from classroom-based research. Dordrecht: Springer.

    Google Scholar 

  • Ergazaki, M., & Zogza, V. (2005). From a causal question to stating and testing hypotheses: exploring the discursive activity of biology students. In K. Boersma, M. Goedhart, O. Jong, & O. Eijkelhof (Eds.), Research and the quality of science education (pp. 407–417). New York: Springer.

    Chapter  Google Scholar 

  • Ergazaki, M., & Zogza, V. (2013). How does the model of Inquiry-Based Science Education work in the kindergarten: the case of biology. Review of Science, Mathematics and ICT Education, 7(2), 73–97.

    Google Scholar 

  • Fara, P. (2015). That the apple fell and Newton invented the law of gravity, thus removing God from the cosmos. In R. L. Numbers & K. Kampourakis (Eds.), Newton’s apple and other myths about science (pp. 48–56). Harvard: Harvard University Press.

    Google Scholar 

  • Forge, J. C. (1979). A role for philosophy of science in the teaching of science. Journal of Philosophy of Education, 13(1), 109–117.

    Article  Google Scholar 

  • Gasparatou, R. (2008). Species of philosophical naturalism, science and scienticism. The International Journal of Humanities, 6(4), 27–35.

    Google Scholar 

  • Gasparatou, R. (2016). Emotional speech acts and the educational perlocutions of speech. Journal of Philosophy of Education, 50(3), 319–331.

    Article  Google Scholar 

  • Gasparatou, R. (2017a). On “the temptation to attack common sense”. In M. A. Peters & J. Stickney (Eds.), A companion to Wittgenstein on education: pedagogical investigations (pp. 275–286). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gasparatou, R. (2017b). Philosophy for/with children (P4C) & the development of epistemically virtuous agents. In M. Gregory, J. Haynes, & K. Murris (Eds.), The Routledge international handbook of philosophy for children (pp. 103–111). London: Routledge.

    Google Scholar 

  • Haack, S. (2007). Defending science within reason: between scientism and cynicism. New York: Prometheus Books.

    Google Scholar 

  • Harris, S. (2011). The moral landscape: how science can determine human values. New York: Simon and Schuster.

    Google Scholar 

  • Huber, R. A., & Moore, C. J. (2001). A model for extending hands-on science to be inquiry based. School Science and Mathematics, 101(1), 32–42.

    Article  Google Scholar 

  • Hughes, A. L. (2012). The folly of scientism. The New Atlantis, 37, 32–50.

  • Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20(7–8), 591–607.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (1992). Thinking about theories or thinking with theories?: a classroom study with natural selection. International Journal of Science Education, 14(1), 51–61.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171–1190.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (2008). Designing argumentation learning environments. In I. S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education (pp. 91–115). Rotterdam: Springer.

    Google Scholar 

  • Kampourakis, K. (2016a). (The) nature(s) of science(s) and (the) scientific method(s). Science & Education, 25(1–), 1–2.

  • Kampourakis, K. (2016b). The “general aspects” conceptualization as a pragmatic and effective means to introducing students to nature of science. Journal of Research in Science Teaching, 53(5), 667–682.

    Article  Google Scholar 

  • Kampourakis, K., & Nehm, R. H. (2014). History and philosophy of science and the teaching of evolution: students’ conceptions and explanations. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 377–399). Dordrecht: Springer.

    Google Scholar 

  • Kidd, I. (2014). Doing away with scientism. Philosophy Now, 102, 30–31.

    Google Scholar 

  • Kitcher, P. (2012). Seeing is unbelieving. New York Times Book Review. http://www.nytimes.com/2012/03/25/books/review/alex-rosenbergs-the-atheists-guide-to-reality.html. Accessed 26 Jul 2017.

  • Kotzee, B. (Ed.). (2013). Education and the Growth of Knowledge: perspectives from social and virtue epistemology. New Jersey: John Wiley & Sons.

    Google Scholar 

  • Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.

    Article  Google Scholar 

  • Kuhn, T. S. (2012). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Kuhn, D., & Crowell, A. (2011). Dialogic argumentation as a vehicle for developing young adolescents’ thinking. Psychological Science, 22(4), 545–552.

    Article  Google Scholar 

  • Kuhn, D., & Park, S. H. (2005). Epistemological understanding and the development of intellectual values. International Journal of Educational Research, 43(3), 111–124.

    Article  Google Scholar 

  • Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113–129.

    Article  Google Scholar 

  • Kuhn, D., & Pease, M. (2006). Do children and adults learn differently? Journal of Cognition and Development, 7(3), 279–293.

    Article  Google Scholar 

  • Ladyman, J. (2011). The scientistic stance: the empirical and materialist stances reconciled. Synthese, 178(1), 87–98.

    Article  Google Scholar 

  • Lakatos. (1978). The methodology of scientific research programmes: philosophical papers. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Laudan, L. (1986). Science and values. Oakland: University of California Press.

    Google Scholar 

  • Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont: Wadsworth Pub.

    Google Scholar 

  • Lederman, N. (2006). Research on nature of science: reflections on the past, anticipations of the future. Asia-Pacific Forum on Science Learning and Teaching, 7(1), 1–11.

    Google Scholar 

  • Lederman, & Abell, S. K. (2014). Handbook of research on science education. New York: Routledge.

    Google Scholar 

  • Lederman, N., & Lederman, J. (2014). Research on teaching and learning of nature of science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 600–620). New York: Routledge.

    Google Scholar 

  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.

    Article  Google Scholar 

  • Liang, L. L., Chen, S., Chen, X., Kaya, O. N., Adams, A. D., Macklin, M., & Ebenezer, J. (2009). Preservice teachers’ views about nature of scientific knowledge development: an international collaborative study. International Journal of Science and Mathematics Education, 7(5), 987–1012.

    Article  Google Scholar 

  • Longbottom, J. E., & Butler, P. H. (1999). Why teach science? Setting rational goals for science education. Science Education, 83(4), 473–492.

    Article  Google Scholar 

  • Longino, H.E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. New Jersey: Princeton University Press.

  • Matthews, M. R. (1988). A role for history and philosophy in science teaching. Educational Philosophy and Theory, 20(2), 67–81.

    Article  Google Scholar 

  • Matthews, M. R. (1990). History, philosophy and science teaching: a rapprochement. Studies in Science Education, 18, 25–51.

    Article  Google Scholar 

  • Matthews, M. R. (2004). Reappraising positivism and education: the arguments of Philipp Frank and Herbert Feigl. Science & Education, 13(1), 7–39.

    Article  Google Scholar 

  • Matthews, M. R. (2017). In praise of philosophically-engaged history of science. Science & Education, 26, 175–184.

    Article  Google Scholar 

  • McCain, K. (2016). The nature of scientific knowledge: an explanatory approach. New York: Springer.

    Book  Google Scholar 

  • McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.

    Article  Google Scholar 

  • McComas, W. F., & Kampourakis, K. (2015). Using the history of biology, chemistry, geology, and physics to illustrate general aspects of nature of science. Review of Science, Mathematics and ICT education, 9(1), 47–76.

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction: what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47, 474–496.

    Article  Google Scholar 

  • Mizrahi, M. (2017). What’s so bad about Scientism? Social Epistemology, 1–17. https://doi.org/10.1080/02691728.2017.1297505.

  • Neurath, O. (1921). Anti-spengler. Munich: Callwey Verlang.

    Google Scholar 

  • Nola, R., & Irzik, G. (2006). Philosophy, science, education and culture (Vol. 28). New York: Springer.

    Google Scholar 

  • Numbers, R. L., & Kampourakis, K. (2015). Newton’s apple and other myths about science. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Olby, R. C. (1974). The path to the double helix: the discovery of DNA. North Chelmsford: Courier Corporation.

    Google Scholar 

  • Östman, L., & Almqvist, J. (2010). 11 What do values and norms have to do with scientific literacy? In C. Linder, L. Östman, D. A. Roberts, P. Wickman, G. Ericksen, & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 160–175). New York: Routledge.

    Google Scholar 

  • Östman, L., & Wickman, P. O. (2014). A pragmatic approach on epistemology, teaching, and learning. Science Education, 98(3), 375–382.

    Article  Google Scholar 

  • Peels, R. (2015). Het fundamentele argument tegen sciëntisme. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, 107(3), 267–284.

    Article  Google Scholar 

  • Peels, R. (2017). Ten reasons to embrace scientism. Studies in History and Philosophy of Science, 1(63), 11–21.

    Article  Google Scholar 

  • Pigliucci, M. (2013). New Atheism and the scientistic turn in the atheism movement. Midwest Studies in Philosophy, 37(1), 142–153.

    Article  Google Scholar 

  • Pinker, S. (2013). Science is not your enemy: An impassioned plea to neglected novelists, embattled professors, and tenure-less historians. New Republic, 6. https://newrepublic.com/article/114127/science-not-enemy-humanities. Accessed 30 Jul 2017.

  • Quine, W. V. O., & Ullian, J. S. (1978). In R. M. Ohmann (Ed.), The web of belief. New York: Random House.

    Google Scholar 

  • Quine, W. V. O., Churchland, P. S., & Føllesdal, D. (2013). Word and object. MIT Press.

  • Reiss, M. (2007). What should be the aim (s) of school science education. In D. Corrigan, J. Dillon, & R. F. Gunstone (Eds.), The re-emergence of values in science education (pp. 13–28). Rotterdam: Sense Publishers.

    Google Scholar 

  • Rosenberg, A. (2011). The atheist’s guide to reality: enjoying life without illusions. New York: W.W. Norton.

    Google Scholar 

  • Ross, D., Ladyman, J., & Spurrett, D. (2007). In defence of scientism. In J. Ladyman, D. Ross, D. Spurrett, & J. Collier (Eds.), Every thing must go: metaphysics naturalized (pp. 1–65). Oxford: Oxford University Press.

    Google Scholar 

  • Rowbottom, D. P., & Aiston, S. J. (2006). The myth of ‘scientific method’ in contemporary educational research. Journal of Philosophy of Education, 40(2), 137–156.

    Article  Google Scholar 

  • Simonneaux, L. (2002). Analysis of classroom debating strategies in the field of biotechnology. Journal of Biological Education, 37(1), 9–12.

    Article  Google Scholar 

  • Simonneaux, L. (2008). Argumentation in science education: an overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education (pp. 179–199). Netherlands: Springer.

    Google Scholar 

  • Simonneaux, L. (2014). Questions socialement vives and socio-scientific issues: new trends of research to meet the training needs of postmodern society. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Topics and trends in current science education (pp. 37–54). Netherlands: Springer.

    Chapter  Google Scholar 

  • Smith, R. (2008). Proteus rising: re-imagining educational research. Journal of Philosophy of Education, 42(1), 183–198.

    Article  Google Scholar 

  • Smith, R. (2016). The virtues of unknowing. Journal of Philosophy of Education, 50(2), 272–284.

    Article  Google Scholar 

  • Solbes, J., & Traver, M. (2003). Against a negative image of science: history of science and the teaching of physics and chemistry. Science & Education, 12(7), 703–717.

    Article  Google Scholar 

  • Solomon, R. C. (1988). On emotions as judgments. American Philosophical Quarterly, 25(2), 183–191.

    Google Scholar 

  • Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: action research in the classroom. Journal of Research in Science Teaching, 29(4), 409–421.

    Article  Google Scholar 

  • Sorell, T. (2013). Scientism: Philosophy and the infatuation with science. London: Routledge.

  • Standish, P. (2012). Transparency, accountability, and the public role of higher education. Educational Futures, 5(1), 3–14.

    Google Scholar 

  • Stanford, P. K. (2016) Naturalism without Scientism. In K.J. Clark (Ed.), The Blackwell Companion to Naturalism (pp. 91–108). New Jersey: John Wiley & Sons.

  • Stenmark, M. (2001). Scientism: science, ethics and religion. Aldershot: Ashgate.

    Google Scholar 

  • Stickney, J. (2009). Wittgenstein’s contextualist approach to judging “sound” teaching: escaping enthrallment in criteria-based assessments. Educational Theory, 59(2), 197–216.

    Article  Google Scholar 

  • Thurs, D. (2015). That the scientific method accurately reflects what scientists actually do. In R. L. Numbers & K. Kampourakis (Eds.), Newton’s apple and other myths about science (pp. 210–219). Harvard: Harvard University Press.

    Google Scholar 

  • Van Woudenberg, R. (2011). Truths that science cannot touch. Philosophia Reformata, 76(2), 169–186.

    Article  Google Scholar 

  • Wandersee, J. H. (1992). The historicality of cognition: implications for science education research. Journal of Research in Science Teaching, 29(4), 423–434.

    Article  Google Scholar 

  • Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.

    Google Scholar 

  • Wootton, D. (2015). The invention of science: a new history of the scientific revolution. London: Penguin Random House.

    Google Scholar 

  • Zagzebski, L. T. (1996). Virtues of the mind. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renia Gasparatou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gasparatou, R. Scientism and Scientific Thinking. Sci & Educ 26, 799–812 (2017). https://doi.org/10.1007/s11191-017-9931-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-017-9931-1