Science & Education

, Volume 25, Issue 7–8, pp 747–773 | Cite as

Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science

  • Yefrin Ariza
  • Pablo Lorenzano
  • Agustín Adúriz-Bravo


There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of ‘theoretical model’, stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a ‘semantic family’, and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.


Science Teacher Scientific Theory Intended Application Semantic Conception Semantic View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research reported in this article was supported by Research Grants FFI2012-37354/CONSOLIDER INGENIO CSD2009-0056 (Spain), FFI2013-41415-P (Spain), PICT-2014-1741 and PICT-2013-0503 (ANPCyT, Argentina), and PIP 112-201101-01135 (CONICET, Argentina).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abreu, C., Lorenzano, P., & Moulines, C. U. (Eds.). (2013). Bibliography of structuralism III (1995–2012 and Additions). Metatheoria, 3, 87–144.Google Scholar
  2. Adams, E. W. (1955). Axiomatic foundations of rigid body mechanics. Doctoral thesis, Stanford University.Google Scholar
  3. Adams, E. W. (1959). The foundations of rigid body mechanics and the derivation of its laws from those of particle mechanics. In L. Henkin, P. Suppes, & A. Tarski (Eds.), The axiomatic method (pp. 250–265). Amsterdam: North-Holland.CrossRefGoogle Scholar
  4. Adúriz-Bravo, A. (2001). Integración de la Epistemología en la Formación del Profesorado de Ciencias. Doctoral thesis, Bellaterra: Universitat Autònoma de Barcelona.Google Scholar
  5. Adúriz-Bravo, A. (2005). Una Introducción a la Naturaleza de la Ciencia: La Epistemología en la Enseñanza de las Ciencias Naturales. Buenos Aires: Fondo de Cultura Económica.Google Scholar
  6. Adúriz-Bravo, A. (2011). Epistemología para el Profesorado de Física: Operaciones Transpositivas y Creación de una Actividad Metacientífica Escolar. Revista de Enseñanza de la Física, 24(1), 7–20.Google Scholar
  7. Adúriz-Bravo, A. (2013). A semantic view of scientific models for science education. Science & Education, 22(7), 1593–1611.CrossRefGoogle Scholar
  8. Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2005). Utilising the ‘3P-model’ to characterise the discipline of didactics of science. Science & Education, 14(1), 29–41.CrossRefGoogle Scholar
  9. Ariza, Y. (2015). Introducción de la metateoría estructuralista en la didáctica de las ciencias: Didáctica modeloteórica de las ciencias. Doctoral thesis, Buenos Aires: Universidad Nacional de Tres de Febrero.Google Scholar
  10. Ariza, Y., Lorenzano, P., & Adúriz-Bravo, A. (2010). Dificultades en la introducción de la “familia semanticista” a la didáctica de las ciencias naturales. Revista Latinoamericana de Estudios Educativos, 6(1), 59–74.Google Scholar
  11. Balzer, W. (1978). Empirische Geometrie und Raum-Zeit-Theorie in mengentheo-retischer Darstellung. Kronberg: Scriptor.Google Scholar
  12. Balzer, W. (1982). Empirische theorien: Modelle, strukturen, beispiele. Braunschweig: Vieweg.CrossRefGoogle Scholar
  13. Balzer, W. (1985). Theorie und Messung. Berlin: Springer.CrossRefGoogle Scholar
  14. Balzer, W., & Moulines, C. U. (Eds.). (1996). Structuralist theory of science: Focal issues, new results. Berlin: de Gruyter.Google Scholar
  15. Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science. The structuralist program. Dordrecht: Reidel.CrossRefGoogle Scholar
  16. Balzer, W., Moulines, C. U., & Sneed, J. D. (Eds.). (2000). Structuralist knowledge representation: Paradigmatic examples. Amsterdam: Rodopi.Google Scholar
  17. Beth, E. W. (1948a). Natuurphilosophie. Gorinchem: Noorduijn.Google Scholar
  18. Beth, E. W. (1948b). Analyse sémantique des théories physiques. Synthese, 7, 206–207.Google Scholar
  19. Beth, E. W. (1949). Towards an up-to-date philosophy of the natural sciences. Methodos, 1, 178–185.Google Scholar
  20. Beth, E. W. (1960). Semantics of physical theories. Synthese, 12, 172–175.CrossRefGoogle Scholar
  21. Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.CrossRefGoogle Scholar
  22. Bueno, O. (1997). Empirical adequacy: A partial structures approach. Studies in History and Philosophy of Science, 28, 585–610.CrossRefGoogle Scholar
  23. Cartwright, N. (2008). Reply to Ulrich Gahde. In S. Hartmann, C. Hoefer, & L. Bovens (Eds.), Nancy Cartwright’s philosophy of science (pp. 65–66). New York: Routledge.Google Scholar
  24. Cartwright, N., Shomar, T., & Suárez, M. (1995). The tool box of science: Tools for building of models with a superconductivity example. In W. E. Herfel, et al. (Eds.), Theories and models in scientific processes (pp. 27–36). Amsterdam: Rodopi.Google Scholar
  25. Chamizo, J. A. (2010). Una tipología de los modelos para la enseñanza de las ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 7(1), 26–41.Google Scholar
  26. Chamizo, J. A. (2013). A new definition of models and modeling in chemistry’s teaching. Science & Education, 22(7), 1613–1632.CrossRefGoogle Scholar
  27. Clough, M. P. (2008). Teaching the nature of science to secondary and post-secondary students: Questions rather than tenets. The California Journal of Science Education, 8(2), 31–40.Google Scholar
  28. Da Costa, N., & French, S. (1990). The model-theoretic approach in philosophy of science. Philosophy of Science, 57, 248–265.CrossRefGoogle Scholar
  29. Da Costa, N., & French, S. (2003). Science and partial truth. A unitary approach to models and scientific reasoning. Oxford: Oxford University Press.CrossRefGoogle Scholar
  30. Dalla Chiara, M. L., & Toraldo de Francia, G. (1973). A logical analysis of physical theories. Rivista di Nuovo Cimento, 3, 1–20.CrossRefGoogle Scholar
  31. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725–749.CrossRefGoogle Scholar
  32. Diederich, W. (1996). Structuralism as developed within the model-theoretical approach in the philosophy of science. In W. Balzer & C. U. Moulines (Eds.), Structuralist theory of science: Focal issues, new results (pp. 15–22). Berlin: de Gruyter.Google Scholar
  33. Diederich, W., Ibarra, A., & Mormann, T. (1989). Bibliography of structuralism I. Erkenntnis, 30, 387–407.CrossRefGoogle Scholar
  34. Diederich, W., Ibarra, A., & Mormann, T. (1994). Bibliography of structuralism II (1989–1994 and additions). Erkenntnis, 41, 403–418.CrossRefGoogle Scholar
  35. Enqvist, S. (2011). A structuralist framework for the logic of theory change. In E. J. Olsson & S. Enqvist (Eds.), Belief revision meets philosophy of science, logic, epistemology, and the unity of science (pp. 105–135). Dordrecht: Springer.Google Scholar
  36. Erduran, S., & Duschl, R. (2004). Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40(1), 105–138.CrossRefGoogle Scholar
  37. Estany, A. (1993). Introducción a la filosofía de la ciencia. Barcelona: Crítica.Google Scholar
  38. French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13(2), 103–121.CrossRefGoogle Scholar
  39. Frigg, R. (2006). Scientific representation and the semantic view of theories. Theoria, 55, 37–53.Google Scholar
  40. Giere, R.N. (1979). Understanding scientific reasoning. New York: Holt/Reinhart and Winston; 2nd ed., 1984; 3rd revised ed., 1991; 4th ed., 1997; 5th revised ed. 2006 (with J. Bickle & R.F. Mauldin).Google Scholar
  41. Giere, R. N. (1983). Testing theoretical hypotheses. In J. Earman (Ed.), Testing scientific theories (pp. 269–298). Minneapolis: University of Minnesota Press.Google Scholar
  42. Giere, R. N. (1985). Constructive realism. In P. M. Churchland & C. Hooker (Eds.), Images of science. Essays on realism and empiricism with a reply from Bas C. van Fraassen (pp. 75–98). Chicago: University of Chicago Press.Google Scholar
  43. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  44. Giere, R. N. (1994). The cognitive structure of scientific theories. Philosophy of Science, 61, 276–296.CrossRefGoogle Scholar
  45. Gilbert, J. K., & Boulter, C. J. (Eds.). (2000). Developing models in science education. Dordrecht: Kluwer.Google Scholar
  46. Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27–43.CrossRefGoogle Scholar
  47. Khine, M. S., & Saleh, I. M. (2011). Models and modeling: Cognitive tools for scientific enquiry. Dordrecht: Springer.CrossRefGoogle Scholar
  48. Kuhn, T.S. (1962.1970). The structure of scientific revolutions (2nd edn.). Chicago: Chicago University Press.Google Scholar
  49. Kuhn, T. S. (1969). Second thoughts on paradigms. In F. Suppe (Ed.), The structure of scientific theories (2nd ed., pp. 459–482). Urbana, IL: University of Illinois Press.Google Scholar
  50. Lakatos, I. (1971). History of science and its rational reconstruction. In R. C. Buck & R. S. Cohen (Eds.), PSA 1970, Boston studies in the philosophy of science (Vol. 8, pp. 174–182). Dordrecht: Reidel.Google Scholar
  51. Lakatos, I. (1978). The methodology of scientific research programmes (Vol. 1). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Lorenzano, P. (2013). The semantic conception and the structuralist view of theories: A critique of Suppe’s criticisms. Studies in History and Philosophy of Science, 44, 600–607.CrossRefGoogle Scholar
  53. Ludwig, G. (1970). Deutung des Begriffs ‘Physikalische Theorie’ und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens. Lecture Notes in Physics, Bd. 4. Berlin: Springer.Google Scholar
  54. Ludwig, G. (1978). Die Grundstrukturen einer physikalischen Theorie. Berlin: Springer.CrossRefGoogle Scholar
  55. Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. Nueva York: Routledge.Google Scholar
  56. McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 3–39). Dordrecht: Kluwer.Google Scholar
  57. McKinsey, J. C. C., Sugar, A., & Suppes, P. (1953). Axiomatic foundations of classical particle mechanics. Journal of Rational Mechanics and Analysis, 2, 253–272.Google Scholar
  58. Morgan, M., & Morrison, M. (Eds.). (1999). Models as mediators. Cambridge: Cambridge University Press.Google Scholar
  59. Morrison, M. (1999). Models and autonomous agents. In M. Morgan & M. Morrison (Eds.), Models as mediators (pp. 38–65). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. Moulines, C. U. (1975). A logical reconstruction of simple equilibrium thermodynamics. Erkenntnis, 9(1), 101–130.CrossRefGoogle Scholar
  61. Moulines, C. U. (1982). Exploraciones metacientíficas. Madrid: Alianza.Google Scholar
  62. Moulines, C. U. (2002). Introduction: Structuralism as a program for modelling theoretical science. Synthese, 130, 1–11.CrossRefGoogle Scholar
  63. Moulines, C. U. (2008). Die Entwicklung der modernen Wissenschaftstheorie (1890–2000): Eine historische Einführung. Münster: LIT-Verlag.Google Scholar
  64. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130.CrossRefGoogle Scholar
  65. Passmore, C., Gouvea, J. S., & Giere, R. N. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171–1202). Dordrecht: Springer.Google Scholar
  66. Przełecki, M. (1969). The logic of empirical theories. London: Routledge & Kegan Paul.Google Scholar
  67. Scheibe, E. (1997). Die Reduktion physikalischer Theorien, Teil I, Grundlagen und elementare Theorie. Berlin: Springer.CrossRefGoogle Scholar
  68. Scheibe, E. (1999). Die Reduktion physikalischer Theorien, Teil II, Inkommensurabilität und Grenzfallreduktion. Berlin: Springer.CrossRefGoogle Scholar
  69. Scheibe, E. (2001). Between rationalism and empiricism. In B. Falkenburg (Ed.), Selected papers in the philosophy of physics. Berlin: Springer.Google Scholar
  70. Sneed, J. D. (1971). The logical structure of mathematical physics. Dordrecht: Reidel.CrossRefGoogle Scholar
  71. Sneed, J. D. (1983). Structuralism and scientific realism. Erkenntnis, 19, 345–370.CrossRefGoogle Scholar
  72. Stegmüller, W. (1973). Theorienstrukturen und Theoriendynamik. Berlin: Springer.Google Scholar
  73. Stegmüller, W. (1979). The structuralist view of theories. New York: Springer.CrossRefGoogle Scholar
  74. Stegmüller, W. (1986). Die Entwicklung des neuen Strukturalismus seit 1973. Berlin: Springer.Google Scholar
  75. Suppe, F. (1967). The meaning and use of models in mathematics and the exact sciences. Doctoral Thesis, Michigan: University of Michigan.Google Scholar
  76. Suppe, F. (1972). What’s wrong with the received view on the structure of scientific theories? Philosophy of Science, 39, 1–19.CrossRefGoogle Scholar
  77. Suppe, F. (1974). The search for philosophical understanding of scientific theories. In F. Suppe (Ed.), The structure of scientific theories (pp. 3–241). Urbana, IL: The University of Illinois Press.Google Scholar
  78. Suppe, F. (1977). Afterword. In F. Suppe (Ed.), The structure of scientific theories (2nd ed., pp. 617–730). Urbana: University of Illinois Press.Google Scholar
  79. Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana, IL: University of Illinois Press.Google Scholar
  80. Suppe, F. (1998). Theories, scientific. In E. Craig (Ed.), Routledge encyclopedia of philosophy (Vol. 9, pp. 344–355). London: Routledge.Google Scholar
  81. Suppes, P. (1957). Introduction to logic. New York: Van Nostrand.Google Scholar
  82. Suppes, P. (1962). Models of data. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science: Proceedings of the 1960 international congress (pp. 252–261). Stanford: Stanford University Press.Google Scholar
  83. Suppes, P. (1969). Studies in the methodology and foundations of science: Selected papers from 1951 to 1969. Dordrecht: Reidel.CrossRefGoogle Scholar
  84. Suppes, P. (1970). Set-theoretical structures in science. Stanford: Stanford University.Google Scholar
  85. Suppes, P. (2002). Representation and invariance of scientific structures. Stanford: Center for the Study of Language and Information (CSLI).Google Scholar
  86. Torretti, R. (1990). Creative understanding: Philosophical reflections on physics. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  87. Toulmin, S. (1972). Human understanding: The collective use and development of concepts (Vol. 1). Oxford: Clarendon Press.Google Scholar
  88. van Fraassen, B. (1970). On the extension of Beth’s semantics of physical theories. Philosophy of Science, 37(3), 325–339.CrossRefGoogle Scholar
  89. van Fraassen, B. (1972). A formal approach to the philosophy of science. In R. Colodny (Ed.), Paradigms and paradoxes (pp. 303–366). Pittsburgh: University of Pittsburgh Press.Google Scholar
  90. van Fraassen, B. (1974). The formal representation of physical quantities. In R. S. Cohen & M. W. Wartofsky (Eds.), Logical and epistemological studies in contemporary physics (pp. 196–209). Dordrecht: Reidel.CrossRefGoogle Scholar
  91. van Fraassen, B. (1976). To save the phenomena. The Journal of Philosophy, 73(18), 623–632.CrossRefGoogle Scholar
  92. van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  93. van Fraassen, B. (1987). The semantic approach to scientific theories. In N. Nersessian (Ed.), The process of science (pp. 105–124). Dordrecht: Nijhoff.CrossRefGoogle Scholar
  94. van Fraassen, B. (1989). Laws and symmetry. Oxford: Clarendon Press/Oxford University Press.CrossRefGoogle Scholar
  95. van Fraassen, B. (1997). Structure and perspective: Philosophical perplexity and paradox. In M. L. Dalla Chiara, et al. (Eds.), Logic and scientific methods (pp. 511–530). Dordrecht: Kluwer.CrossRefGoogle Scholar
  96. van Fraassen, B. (2008). Scientific representation: Paradoxes of perspectives. Oxford: Oxford University Press.CrossRefGoogle Scholar
  97. von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.Google Scholar
  98. Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. Oxford: Oxford University Press.CrossRefGoogle Scholar
  99. Weyl, H. (1927). Quantenmechanik und Gruppentheorie. Zeitschrift für Physik, 46, 1–46.CrossRefGoogle Scholar
  100. Weyl, H. (1928). Gruppentheorie und Quantenmechanik. Leipzig: Hirzel; 2. Auflage, 1931.Google Scholar
  101. Wójcicki, R. (1976). Some Problems of formal methodology of science. In M. Przełecki, K. Szaniawski, & R. Wójcicki (Eds.), Formal methods in the methodology of empirical sciences (pp. 9–18). Dordrecht: Reidel.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Centro de Estudios de Filosofía e Historia de la Ciencia (CEFHIC)Universidad Nacional de Quilmes (UNQ)Buenos AiresArgentina
  2. 2.CeFIEC-Instituto de Investigaciones Centro de Formación e Investigación en Enseñanza de las Ciencias, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires (UBA)Buenos AiresArgentina
  3. 3.CONICET-Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina

Personalised recommendations