Science & Education

, Volume 24, Issue 5–6, pp 529–541 | Cite as

The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein

Article

Abstract

In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein’s thoughts on the structure of radiation from the point of view of the formal analogies he used as “lenses” to “see” through the “black box” of Planck’s blackbody radiation law. A comparison is also made with his 1925 paper on the quantum gas where he used the same formal methods. Changes of formal points of view are most of the time taken for granted or passed over in silence in studies on the mathematization of physics as if they had no special significance. Revisiting Einstein’s classic papers on the nature of light and matter from the angle of the various theoretical tools he used, namely entropy and energy fluctuation calculations, helps explain why he was in a unique position to make visible the particle structure of radiation and the dual (particle and wave) nature of light and matter. Finally, this case study calls attention to the more general question of the surprising creative power of formal analogies and their frequent use in theoretical physics. This aspect of intellectual creation can be useful in the teaching of physics.

References

  1. Abiko, S. (2000). Einstein’s theories of fluctuation and the thermal radiation: The first quantum theory through statistical thermodynamics. Historia Scientiarum, 10, 130–147.Google Scholar
  2. Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. Pittsburgh: University of Pittsburgh Press.Google Scholar
  3. Balashov, Y., & Vizgin, V. (Eds.). (2002). Einstein studies in Russia. Boston: Birkäuser.Google Scholar
  4. Baracca, A. (1985). Einstein’s statistical mechanics. Revista Mexicana de Fisica, 31, 695–722.Google Scholar
  5. Barcelo, C., Liberati, S. & Visser, M. (2005). Analogue gravity. arXiv:gr-qc/0505065v2, I.Google Scholar
  6. Bergia, S., & Navaro, L. (1988). Recurrences and continuity in Einstein’s early research on radiation between 1905 and 1916. Archives for the History of Exact Sciences, 29, 79–99.CrossRefGoogle Scholar
  7. Blau, S. K. (2005). Black-hole physics in an electromagnetic waveguide. Physics Today, August, 19–20.Google Scholar
  8. Brush, S. G. (2007). How ideas become knowledge: The light-quantum hypothesis, 1905–1935. Historical Studies in the Physical and Biological Sciences, 37, 205–246.CrossRefGoogle Scholar
  9. de Berg, K. C. (1992). Mathematics in science: The role of the history of science in communicating the significance of mathematical formalism in science. Science & Education, 1, 77–87.CrossRefGoogle Scholar
  10. Dorling, J. (1971). Einstein’s introduction of photons: Argument by analogy or deduction from the phenomena? British Journal for the Philosophy of Science, 22, 1–8.CrossRefGoogle Scholar
  11. Duck, I., & Sudarshan, E. C. G. (1997). Pauli and the spin-statistics theorem. Singapore: World Scientific.Google Scholar
  12. Einstein, A. (1989). The collected papers of Albert Einstein, vol. 2, the Swiss years: Writings, 19001909. English translation. (A. Beck, Trans.). Princeton: Princeton University Press.Google Scholar
  13. Einstein, A. (1993). The collected papers of Albert Einstein, vol. 3, the Swiss years, Writings, 19091911. English translation. (A. Beck, Trans.). Princeton: Princeton University Press.Google Scholar
  14. Einstein, A. (1995). The collected papers of Albert Einstein, vol. 5, the Swiss years: Correspondence, 19021914. English translation. (A. Beck, Trans.). Princeton: Princeton University Press.Google Scholar
  15. Einstein, A. (1997a). Quantum theory of the monoatomic ideal gas: Part one and two. In Duck, & Sudarshan, pp. 82–99.Google Scholar
  16. Einstein, A. (1997b). On the quantum theory of the ideal gas. In Duck, & Sudarshan, pp. 100–107.Google Scholar
  17. Garay, L. J., Anglin, J. R., Cirac, J. I., & Zoller, P. (2000). Sonic analog of gravitational black holes in Bose–Einstein condensates. Physical Review Letter, 85, 4643–4647.CrossRefGoogle Scholar
  18. Gentner, D., Holyoak, K. J., & Kokinov, B. N. (Eds.). (2001). The analogical mind: Perspectives from cognitive science. Cambridge: MIT Press.Google Scholar
  19. Gingras, Y. (2001). What did mathematics do to physics? History of Science, 39, 383–416.CrossRefGoogle Scholar
  20. Gingras, Y. (2011). «La valeur inductive des analogies: comment Einstein a vu la lumière à travers le prisme des analogies formelles», dans Hugues Chabot, Sophie Roux, La mathématisation comme problème (pp. 88–108). Paris: Éditions des archives contemporaines.Google Scholar
  21. Hendry, J. (1980). The development of attitudes toward the wave-particle duality of light and quantum theory, 1900–1920. Annals of Science, 37, 59–79.CrossRefGoogle Scholar
  22. Hesse, M. B. (1966). Models and analogies in science. Notre Dame: University of Notre Dame Press.Google Scholar
  23. Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative leaps. Cambridge: MIT Press.Google Scholar
  24. Klein, M. J. (1967). Thermodynamics in Einstein’s thoughts. Science, 157, 509–516.CrossRefGoogle Scholar
  25. Klein, M. J. (1980). No firm foundation: Einstein and the early quantum theory. In H. Woolf (Ed.), Some strangeness in the proportion: A centennial symposium to celebrate the achievements of Albert Einstein (pp. 161–185). Reading, MA: Addison-Wiley.Google Scholar
  26. Klein, M. J. (1982). Fluctuations and statistical physics in Einstein’s early work. In G. Holton & Y. Elkana (Eds.), Albert Einstein: Historical and cultural perspectives (pp. 39–58). Princeton: Princeton University Press.Google Scholar
  27. Kojevnikov, A. (2002). Einstein’s fluctuation formula and the wave-particle duality. In Balashov & Vizgin, pp. 181–228.Google Scholar
  28. Landé, A. (1965). New foundations of quantum mechanics. Cambridge: Cambridge University Press.Google Scholar
  29. Leatherdale, W. H. (1974). The role of analogy, model and metaphor in science. Amsterdam: North-Holland.Google Scholar
  30. Maxwell, J. C. (2003). The scientific papers of James Clerk Maxwell (Vol. 1). New York: Dover Publications.Google Scholar
  31. Mehra, J., & Rechenberg, H. (1982). The historical development of quantum theory, vol. 1, part 2, the quantum theory of Planck, Einstein, Bohr and Sommerfeld: The foundation and the rise of its difficulties 1900–1925. New York: Springer.Google Scholar
  32. Morgan, M., & Morrison, M. (Eds.). (1999). Models as mediators: Perspectives on natural and social sciences. Cambridge: Cambridge University Press.Google Scholar
  33. Norton, J. D. (2006). Atoms entropy quanta: Einstein’s miraculous argument of 1905. Studies in History and Philosophy of Modern Physics, 37, 71–100.CrossRefGoogle Scholar
  34. Pais, A. (1982). ‘Subtle is the Lord…’ the science and the life of Albert Einstein. New York: Oxford University Press.Google Scholar
  35. Pereira de Ataíde, A. R., & Greca, I. M. (2013). Epistemic views of the relationship between physics and mathematics: Its influence on the approach of undergraduate students to problem solving. Science & Education, 22, 1405–1421.CrossRefGoogle Scholar
  36. Quale, A. (2011). On the role of mathematics in physics. Science & Education, 20, 359–372.CrossRefGoogle Scholar
  37. Redhead, M. (1980). Models in physics. British Journal for the Philosophy of Science, 31, 145–163.CrossRefGoogle Scholar
  38. Schliemann, J., Loss, D., & Westervelt, R. M. (2005). Zitterbewegung of electronic wave packets in III–V zinc-blende semiconductor quantum wells. Physical Review Letters, 94, 206801-1.CrossRefGoogle Scholar
  39. Schützhold, R., & Unruh, W. G. (2005). Hawking radiation in an electromagnetic waveguide. Physical Review Letters, 95(2005), 31301-1.Google Scholar
  40. Soler, L. (1999). Les quanta de lumière d’Einstein en 1905, comme point focal d’un réseau argumentatif complexe. Philosophia Scientiae, 3, 107–144.Google Scholar
  41. Soler, L. (2001). Les origines de la formule E = hv, ou comment l’analogie est vecteur de nouveauté. Philosophia Scientiae, 5, 89–123.Google Scholar
  42. Stachel, J. (2002). Einstein from ‘B’ to ‘Z’. Boston: Birkhäuser.Google Scholar
  43. Torregrosa, J., López-Gay, R., & Gras-Marti, A. (2006). Mathematics in physics education: Scanning the historical evolution of the differential to find a more appropriate model for teaching differential calculus in physics. Science & Education, 15, 47–462.Google Scholar
  44. Unruh, W. G. (1981). Experimental black-hole evaporation? Physical Review Letters, 46, 1351–1353.CrossRefGoogle Scholar
  45. Wheaton, B. R. (1983). The tiger and the shark: Empirical roots of wave-particle duality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Canada Research Chair in History and Sociology of ScienceCIRST-UQAMMontrealCanada

Personalised recommendations