Skip to main content

Mendel in Genetics Teaching: Some Contributions from History of Science and Articles for Teachers


School science descriptions about Mendel and his story are problematic because several statements that are controversial among historians of science are repeated over and over again as if they were established facts. Another problem is the neglect of other scientists working on inheritance in the second half of the nineteenth century, including Darwin, Spencer, Galton, Nägeli, Brooks, Weismann and de Vries, who paved the way for the reinterpretation of Mendel’s work in 1900. These problems are often found in textbooks and are likely to be present in school science throughout the world. Here, we discuss the contributions that history of science and papers published in journals that target teachers may bring to improve how school science deals with Mendel and his contributions. Evidently the idea is not that school teachers could solve problems still under discussion in the historical literature. The point is, rather, that it is important to avoid treating Mendel’s contributions as uncontroversial, mentioning, for instance, that there are ongoing debates on whether he proposed the laws named after him by appealing to invisible factors underlying phenotypic traits that are seen as the heritable potentials for those traits, and would in due time be known as genes. History of science can contribute to put the mythic Mendel into question in the science classroom, bringing school science closer to the controversies around the interpretation of his work.

This is a preview of subscription content, access via your institution.


  1. 1.

    A different translation is offered in the first publication in English, which appeared in Genetics (Mendel 1950, p. 34). The letter was written in November 18th 1873. It is the last letter sent by Mendel to Nägeli.

  2. 2.

    This may be questioned from the standpoint of the necessity of understanding the hybridists’ decisions in the historical context in which they worked, instead of judging them to be errors from the perspective of the present, or even of Mendel’s subsequent work.

  3. 3.

    All the passages in Spanish were translated into Portuguese by the author of the present paper.


  1. Bateson, W. (1900). Hybridization and cross-breeding as a method of scientific investigation. Journal of the Royal Horticultural Society, 24, 59–66.

    Google Scholar 

  2. Bateson, W. (1902). Mendel’s principles of heredity: A defence. London: Cambridge University Press.

    Book  Google Scholar 

  3. Bateson, W. (1909). Mendel’s principles of heredity. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Baumann, H. (1910). Muret-Sanders Encyclopaedic English-German and German-English Dictionary. Berlin-Schöneberg: Langenscheidtsche Verlagsbuchhandlung. Accessed December 29, 2012.

  5. Bizzo, N. (1999). On the different interpretations of the historical and logical development of the scientific understanding of evolution. In Toward scientific literacy, Proceedings of the IV HPSST conference (pp. 99–112). Calgary: Faculty of Education, University of Calgary.

  6. Bowler, P. J. (1989). The Mendelian revolution: The emergence of hereditarian concepts in modern science and society. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  7. Bowler, P. J. (2003). Evolution: The history of an idea (3rd ed.). Berkeley, CA: University of California Press.

    Google Scholar 

  8. Brannigan, A. (1979). The reification of Mendel. Social Studies of Science, 9, 423–454.

    Article  Google Scholar 

  9. Callender, L. A. (1988). Gregor Mendel: An opponent of descent with modification. History of Science, 26, 41–75.

    Google Scholar 

  10. Campbell, M. (1985). Pairing in Mendel’s theory. The British Journal for the History of Science, 18, 337–340.

    Article  Google Scholar 

  11. Campbell, N. A., & Reece, J. B. (2008). Biology (8th ed.). San Francisco, CA: Pearson/Benjamin Cummings.

    Google Scholar 

  12. Darden, L. (1985). Hugo de Vries’s lecture plates and the discovery of segregation. Annals of Science, 42, 233–242.

    Article  Google Scholar 

  13. Darwin, C. R. (1868). Variations of animals and plants under domestication (1st ed.). London: John Murray.

    Google Scholar 

  14. Darwin, C. (1871). Pangenesis. Nature, 3, 502–503. Accessed 24 December 2013.

  15. Darwin, C. R. (1875). Variations of animals and plants under domestication (2nd ed.). London: John Murray.

    Google Scholar 

  16. Dodson, E. O. (1955). Mendel and the rediscovery of his work. Scientific Monthly, 81, 187.

    Google Scholar 

  17. Dunn, L. C. (1965/1991). A short history of Genetics. Ames, IA: Iowa State University Press.

  18. Eichling, C. W, Sr. (1942). I talked with Mendel. Journal of Heredity, 33, 243–246.

    Google Scholar 

  19. El-Hani, C. N., & Greca, I. M. (2013). ComPratica: A virtual community of practice for promoting biology teachers’ professional development in Brazil. Research in Science Education, 43, 1327–1359.

    Article  Google Scholar 

  20. Endersby, J. (2007). A guinea pig’s history of biology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  21. Fairbanks, D. J., & Rytting, B. (2001). Mendelian controversies: A botanical and historical review. American Journal of Botany, 88, 737–752.

    Article  Google Scholar 

  22. Falk, R. (1986). What is a gene? Studies in the History and Philosophy of Science, 17, 133–173.

    Article  Google Scholar 

  23. Falk, R. (2006). Mendel’s impact. Science in Context, 19, 215–236.

    Article  Google Scholar 

  24. Falk, R. (2009). Genetic analysis: A history of genetic thinking. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  25. Falk, R., & Sarkar, S. (1991). The real objective of Mendel’s paper: A response to Monaghan and Corcos. Biology and Philosophy, 6, 447–451.

    Article  Google Scholar 

  26. Galton, F. (1871). Experiments in pangenesis, by breeding from rabbits of a pure variety, into whose circulation blood taken from other varieties had previously been largely transfused. Proceedings of the Royal Society, 19, 393–410. Accessed December 24, 2013.

  27. Gayon, J. (1998). Darwinism’s struggle for survival: Heredity and the hypothesis of natural selection. Cambridge: Cambridge University Press.

    Google Scholar 

  28. Hartl, D. L., & Orel, V. (1992). What did Gregor Mendel think he discovered? Genetics, 131, 245–253.

    Google Scholar 

  29. Heimans, J. (1968). Ein notizblatt aus dem Nachlass Gregor Mendels mit analysen eines seiner kreuzungsversuch. Folia Mendeliana, 4, 5–36.

    Google Scholar 

  30. Heimans, J. (1971). Mendel’s ideas on the nature of hereditary characters. The explanation of fragmentary records of Mendel’s hybridizing experiments. Folia Mendeliana, 6, 91–98.

    Google Scholar 

  31. Iltis, H. (1932/1966). Life of Mendel. New York, NY: Hafner.

  32. Kaestle, C. F. (1993). The awful reputation of educational research. Educational Researcher, 22, 23–31.

    Google Scholar 

  33. Kampourakis, K. (2013). Mendel and the path to genetics: portraying science as a social process. Science & Education, 22(2), 293–324.

    Article  Google Scholar 

  34. Kennedy, M. M. (1997). The connection between research and practice. Educational Researcher, 26, 4–12.

    Article  Google Scholar 

  35. Kruta, V., & Orel, V. (1974). Mendel, Johann Gregor. In C. C. Gillespie (Ed.), Dictionary of scientific biography (Vol. IX, pp. 277–283). New York: Scribner.

    Google Scholar 

  36. Lamprecht, H. (1961). Die genekarte von Pisum bei normaler struktur der chromosomen. Agri Hortique Genetika, 19, 360–401.

    Google Scholar 

  37. MacRoberts, M. H. (1985). Was Mendel’s paper on Pisum neglected or unknown? Annals of Science, 42, 339–345.

    Article  Google Scholar 

  38. Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Cambridge, MA: Harvard University Press.

    Google Scholar 

  39. Mayr, E. (1991). One long argument: Charles Darwin and the genesis of modern evolutionary thought. Cambridge, MA: Harvard University Press.

    Google Scholar 

  40. McIntyre, D. (2005). Bridging the gap between research and practice. Cambridge Journal of Education, 35, 357–382.

    Article  Google Scholar 

  41. Mendel. G. (1866). Versuche über pflanzen-hybriden. Verhandlungen des Naturforschenden Vereines in Brunn, 4, 3–47. Accessed December 15, 2012.

  42. Meijer, O. G. (1985). Hugo de vries no Mendelian? Annals of Science, 42, 189–232.

    Article  Google Scholar 

  43. Mendel, G. (1866/1996). Experiments in plant hybridization. New York, NY: Electronic Scholarly Publishing Project. Accessed December 15, 2012.

  44. Mendel, G. (1870). Ueber einige aus künstlichen befruchtung gewonnen Hieracium-Bastarde. Verhandlungen des naturforschenden vereines, Abhandlungen, Brünn, Bd. VIII für das Jahr 1869, 26–31, translated and reprinted as an appendix to Bateson, W. (1909). Mendel’s principles of heredity. Cambridge: Cambridge University Press. Accessed December 24, 2013.

  45. Mendel, G. (1950). Gregor Mendel’s letters to Carl Nägeli. 1866–1873. Genetics, 35, 1–29.

    Google Scholar 

  46. Miretzky, D. (2007). A view of research from practice: Voices of teachers. Theory into Practice, 46, 272–280.

    Article  Google Scholar 

  47. Monaghan, F. V., & Corcos, A. F. (1990). The real objective of Mendel’s paper. Biology and Philosophy, 5, 267–292.

    Article  Google Scholar 

  48. Olby, R. C. (1966). Origins of Mendelism (1st ed.). New York, NY: Schocken Books.

    Google Scholar 

  49. Olby, R. (1979). Mendel no Mendelian? History of Science, 17, 53–72.

    Google Scholar 

  50. Olby, R. C. (1985). Origins of Mendelism (2nd ed.). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  51. Olby, R. (1989). The dimensions of scientific controversy: The biometric-Mendelian debate. The British Journal for the History of Science, 22, 299–320.

    Article  Google Scholar 

  52. Olby, R., & Gautrey, P. (1968). Eleven references to Mendel before 1900. Annals of Science, 24, 7–20.

    Article  Google Scholar 

  53. Oldham, V., & Brouwer, W. (1984). Mendelian genetics: Paradigm, conjecture or research program. Journal of Research in Science Teaching, 21, 623–637.

    Article  Google Scholar 

  54. Orel, V., & Hartl, D. L. (1994). Controversies in the interpretation of Mendel’s discovery. History and Philosophy of the Life Sciences, 16, 423–464.

    Google Scholar 

  55. PBS (Public Broadcasting Service). (2001). What Darwin didn’t know: Gregor Mendel and the mechanism of heredity. Accessed December 28, 2012.

  56. Pekarek, R., Krockover, G., & Shepardson, D. (1996). The research/practice gap in science education. Journal of Research in Science Teaching, 33, 111–113.

    Google Scholar 

  57. Pierce, B. A. (2004). Genética—Um enfoque conceitual. Rio de Janeiro: Guanabara Koogan.

    Google Scholar 

  58. Raven, P. G., Johnson, J., Losos, J., & Singer, S. (2004). Biology (7th ed.). New York, NY: Mc-Graw Hill.

    Google Scholar 

  59. Rose, M. R. (2000). Darwin’s spectre: Evolutionary Biology in modern world. Princeton, NJ: Princeton University Press.

  60. Sandler, I. (1983). Pier Louis Moreande Maupertuis, a precursor of Mendel? Journal of the History of Biology, 16, 101–136.

    Article  Google Scholar 

  61. Sandler, I. (2000). Development: Mendel’s legacy to Genetics. Genetics, 154, 7–11.

    Google Scholar 

  62. Sapp, J. (1990). The nine lives of Gregor Mendel. In H. E. LeGrand (Ed.), Experimental inquiries (pp. 137–166). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  63. Sturtevant, A. H. (1965/2001). A history of genetics. New York, NY: Electronic Scholarly Publishing Project & Cold Spring Harbor Laboratory Press. Accessed December 15, 2012.

  64. Vorzimmer, P. (1968). Darwin and Mendel: The historical connection. Isis, 59, 77–82.

    Article  Google Scholar 

  65. Wood, R. J., & Orel, V. (2005). Scientific breeding in Central Europe during the early nineteenth century: Background to Mendel’s later work. Journal of the History of Biology, 38, 239–272.

    Article  Google Scholar 

Download references


I am indebted to the Brazilian National Council for Scientific and Technological Development (CNPq) for a productivity research Grant (No. 301259/2010-0) and both CNPq and the Research Support Foundation of the State of Bahia (FAPESB) for research funding (Project PNX0016_2009). I would like to than two anonymous reviewers and Kostas Kampourakis for their comments, which helped to significantly improve the paper.

Author information



Corresponding author

Correspondence to Charbel N. El-Hani.



Allchin, D. (2000). Mending Mendelism. The American Biology Teacher, 62, 633–639.

Araujo, K. L., Fragoso, A. X., Silva, F. H. P., Rocha, P. G., Fonseca, S. R. & Errera, F. I. V. (2012). Perfil da Genética. Genética na Escola, 7, 11–23.

Ayuso, E. & Banet, E. (2002). Alternativas a la enseñanza de la genética en educación secundaria. Enseñanza de las Ciencias, 20, 133–157.

Banet, E. & Ayuso, E. (1995). Introducción a la Genética en la Enseñanza Secundaria y Bachillerato: I. Contenidos de Enseñanza y Conocimientos de los Alumnos. Enseñanza de las Ciencias, 13, 137–153.

Bizzo, N. & El-Hani, C. N. (2009). Darwin and Mendel: Evolution and genetics. Journal of Biological Education, 43, 108–114.

Bonner, J. J. (2011). Color code: Using hair color to make a clear connection between genotype and phenotype. The Science Teacher, 78, 64–67.

Caballero Armenta, M. (2008). Algunas ideas del alumnado de secundaria sobre conceptos básicos de genética. Enseñanza de las Ciencias, 26, 227–244.

Codina, J. C. (2005). Aprendiendo genética con Spiderman. Alambique: Didáctica de las Ciencias Experimentales, 45, 111–116.

Colburn, A. (2007). The prepared practitioner: Defining science. The Science Teacher, 74, 12–13.

Corcos, A. & Monaghan, F. (1985). Some myths about Mendel’s experiments. The American Biology Teacher, 47, 233–236.

Ferreira, F. E., Celeste, J. L. L., Santos, M. C., Marques, E. C. R., Valadares, B. L. B. & Oliveira, M. S. (2010). “Cruzamentos mendelianos”: O bingo das ervilhas. Genética na Escola, 5, 5–12.

Hedtke, R. R. (1974). Mendel, Darwin, and Evolution: Some Further Considerations. The American Biology Teacher, 36, 310–311.

Heppner, F. (2001). Mendel’s “dominance” in question. The American Biology Teacher, 63, 150–153.

Huckabee, C. J. (1989). Influences on Mendel. The American Biology Teacher, 51, 84–88.

Kritsky, G. (1973). Mendel, Darwin, and Evolution. The American Biology Teacher, 35, 477–479.

Kritsky, G. (1974). Gene Kritsky comments “Mendel, Darwin, and Evolution: Some Further Considerations”. The American Biology Teacher, 36, 311.

Jiménez-Aleixandre, M. P. & Fernández Pérez, J. (1987). El “desconocido” artículo de Mendel y su empleo en el aula. Enseñanza de las Ciencias, 5, 239–246.

Jurkiewicz, S. (2010). Algoritmos e genética – Um casamento moderno. Ciência em Tela, 3(1), 1–12.

Lorbieski, R., Rodrigues, L. S. S. & d’Arce, L. P. G. (2010). Trilha meiótica: O jogo da meiose e das segregações cromossômica e alélica. Genética na Escola, 5, 25–33.

Madden, D. (2007). The Hardy–Weinberg principle in context. Science in School, 6, 31.

McBride, P. D., Gilman, L. N. & Wright, S. D. (2009). Current debates on the origin of species. Journal of Biological Education, 43, 104–107.

McComas, W. F. (2012a). Darwin’s invention: Inheritance & the “mad dream” of pangenesis. The American Biology Teacher, 74, 86–91.

McComas, W. F. (2012b). Darwin’s error: Using the story of pangenesis to illustrate aspects of nature of science in the classroom. The American Biology Teacher, 74, 151–156.

Melville, W. & Fazio, J. (2007). The life and work of John Snow: Investigating science as inquiry through Snow’s work involving cholera. The Science Teacher, 74, 41–45.

Mingroni Netto, R. C. (2012). Dominante ou recessivo? Genética na Escola, 7, 29–33.

Miyaki, C. Y., Mori, L., Arias, M. C. & Silveira, R. V. M. (2006). Mendel enrolado na dupla-hélice. Genética na Escola, 1, 67–71.

Offner, S. (2011). Mendel’s peas & the nature of the gene: Genes code for proteins & proteins determine phenotype. The American Biology Teacher, 73, 382–387.

Passmore, C., Stewart, J. & Cartier, J. (2009). Model-based inquiry and school science: Creating connections. School Science and Mathematics, 109, 394–402.

Sigüenza Molina, A. F. (2000). Formación de modelos mentales en la resolución de problemas de genética. Enseñanza de las Ciencias, 18, 439–450.

Texley, J. (2008). Take a voyage of discovery: NSTA recommends reviewers share reading suggestions for teachers. The Science Teacher, 75, 24–26.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Hani, C.N. Mendel in Genetics Teaching: Some Contributions from History of Science and Articles for Teachers. Sci & Educ 24, 173–204 (2015).

Download citation


  • Classical Genetic
  • Genetic Teaching
  • Mendelian Genetic
  • Independent Assortment
  • American Biology Teacher