Skip to main content

Understanding Students’ Reasoning: Argumentation Schemes as an Interpretation Method in Science Education

Abstract

The purpose of this paper is to investigate the argumentative structure of students’ arguments using argumentation schemes as an instrument for reconstructing the missing premises underlying their reasoning. Building on the recent literature in science education, in order for an explanation to be persuasive and achieve a conceptual change it needs to proceed from the interlocutor’s background knowledge to the analysis of the unknown or wrongly interpreted phenomena. Argumentation schemes represent the abstract forms of the most used and common forms of human reasoning, combining logical principles with semantic concepts. By identifying the argument structure it is possible to retrieve the missing premises and the crucial concepts and definition on which the conclusion is based. This method of analysis will be shown to provide the teacher with an instrument to improve his or her explanations by taking into consideration the students’ intuitions and deep background knowledge on a specific issue. In this fashion the teacher can advance counterarguments or propose new perspectives on the subject matter in order to persuade the students to accept new scientific concepts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. Students no: 9, 16, 23, 29.

References

  • Baker, M. J. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 47–78). Dordrecht: Kluwer.

    Google Scholar 

  • Bell, P. (2004). Promoting students’ argument construction and collaborative debate in the science classroom. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 115–144). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Braet, A. (1999). The enthymeme in Aristotle’s rhetoric: From argumentation theory to logic. Informal Logic, 19(2&3), 101–117.

    Google Scholar 

  • Bransford, J., Brown, A., & Cocking, R. (Eds.). (2000). How people learn: Brain, mind, experience and school. Washington, DC: National Research Council.

    Google Scholar 

  • Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13–19.

    Article  Google Scholar 

  • Champagne, A., Klopfer, L., & Anderson J. (1980). Factors influencing the learning of classical mechanics. American Journal of Physics, 48, 1074.

    Google Scholar 

  • Chi, M. T. H., & Roscoe, R. D. (2002). The process and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 3–27). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Damer, T. E. (2001). Attacking faulty reasoning (4th ed.). Belmont, CA: Wadsworth Thomson Learning.

    Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.

    Article  Google Scholar 

  • Duit, R. (1999). Conceptual change approaches in science education. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp. 263–282). Oxford: Pergamon.

    Google Scholar 

  • Duschl, R. (2007). Quality argumentation and epistemic criteria. In S. Erduran & M. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 159–175). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Duschl, R. A., Ellenboger, K., & Erduran, S. (1999). Promoting argumentation in middle school science classrooms: A project SEPIA evaluation. Annual meeting of the national association for research in science teaching (March 28–31), Boston, MA.

  • Erduran, S. (2008). Methodological foundation of the study of argumentation in science classroom. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 47–69). Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., & Jimenez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education: Perspectives from classroom-based research. Dordrecht: Springer.

    Google Scholar 

  • Guzzetti, B., Synder, T., Glass, G., & Gamas, W. (1993). Promoting conceptual change in science: A comparative meta-analysis of instructional interventions from reading education and science education. Reading Research Quarterly, 28, 117–155.

    Article  Google Scholar 

  • Hastings, A. C. (1963). A reformulation of the modes of reasoning in argumentation. PhD dissertation. Evanston, IL: Northwestern University.

  • Hewson, P. (1992). Conceptual change in science teaching and teacher education. Paper presented at a meeting on “research and curriculum development in science teaching”. Madrid, Spain: National Center for Educational Research, Documentation, and Assessment, Ministry for Education and Science.

  • Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “Doing the lesson’ or “doing science’: Argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  • Juthe, A. (2005). Argument by analogy. Argumentation, 19, 1–27.

    Article  Google Scholar 

  • Juthe, A. (2009). Refutation by parallel argument. Argumentation, 23, 133–169.

    Article  Google Scholar 

  • Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86, 314–342.

    Article  Google Scholar 

  • Keogh, B., & Naylor, S. (1996). Scientists and primary schools. Sandbach: Millgate House.

    Google Scholar 

  • Koballa, T. (1992). Persuasion and attitude change in science education. Journal of Research in Science Teaching, 29(1), 63–80.

    Article  Google Scholar 

  • Konstantinidou, A. (2013). A new approach of middle school studentsspontaneous reasoning in science, using argumentation schemes as an analytical framework. PhD thesis.

  • Konstantinidou, A., Cerveró, J. M., & Castells, M. (2010). Argumentation and scientific reasoning: The “double hierarchy” argument. In M. F. Taşar & G. Çakmakcı (Eds.), Contemporary science education research: Scientific literacy and social aspects of science (pp. 61–70). Ankara, Turkey: Pegem Akademi.

    Google Scholar 

  • Levi, D. (1995). The case of the missing premise. Informal Logic, 17, 67–88.

    Google Scholar 

  • Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11, 357–380.

    Article  Google Scholar 

  • Macagno, F., & Walton, D. (2009). Argument from analogy in law, the classical tradition, and recent theories. Philosophy and Rhetoric, 42(2), 154–182.

    Article  Google Scholar 

  • Martins, I., et al. (2001). Rhetoric and science education. In H. Behrendt, et al. (Eds.), Research in science education—Past, present, and future (pp. 189–198). Amsterdam: Kluwer.

    Google Scholar 

  • Mestre, J. P. (1994). Cognitive aspects of learning and teaching science. In S. J. Fitzsimmons & L. C. Kerpelman (Eds.), Teacher enhancement for elementary and secondary science and mathematics: Status, issues, and problems (pp. 31–53). Arlington: National Science Foundation.

    Google Scholar 

  • Nussbaum, M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46(2), 84–106.

    Article  Google Scholar 

  • Osborne, J. (2005). The role of argument in science education. Research and the Quality of Science Education, 7, 367–380.

    Article  Google Scholar 

  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466.

    Article  Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Ozdem, Y., Ertepinar, H., Cakiroglu, J., & Erduran, S. (2011). The nature of pre-service science teachers’ argumentation in inquiry-oriented laboratory context. International Journal of Science Education. doi:10.1080/09500693.2011.611835.

    Google Scholar 

  • Pera, M., & Sahea, W. (1991). Persuading science. Canton, MA: Science History.

    Google Scholar 

  • Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of s scientific conception: Towards a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Roschelle, J. (1995). Learning in interactive environments: Prior knowledge and new experience. In J. H. Falk & L. D. Dierking (Eds.), Public institutions for personal learning: Establishing a research agenda (pp. 37–51). Washington, DC: American Association of Museums.

    Google Scholar 

  • Sampson, V., & Clark, D. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447–472.

    Article  Google Scholar 

  • Sandoval, W., & Millwood, K. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55.

    Article  Google Scholar 

  • Schwarz, B., & De Groot, R. (2007). Argumentation in a changing world. Computer-Supported Collaborative Learning, 2, 297–313.

    Article  Google Scholar 

  • Simon, S. (2008). Using Toulmin’s argument pattern in the evaluation of argumentation in school science. International Journal of Research and Method in Education, 31(3), 277–289.

    Article  Google Scholar 

  • Simon, S., & Richardson, K. (2009). Argumentation in school science: Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning. Argumentation, 23, 469–493.

    Article  Google Scholar 

  • Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28(9), 761–787.

    Article  Google Scholar 

  • Southerland, S., Sinatra, G., & Matthews, M. (2001). Belief, knowledge, and science education. Educational Psychology Review, 13(4), 325–351.

    Article  Google Scholar 

  • Stump, E. (trans.) (1988). In Ciceronis Topica. New York: Cornell University Press.

  • Sutton, C. (1996). The scientific model as a form of speech. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe (pp. 143–152). London: Falmer Press.

    Google Scholar 

  • Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S. E., Rieke, R., & Janik, A. (1984). An introduction to reasoning (2nd ed.). New York: Macmillan.

    Google Scholar 

  • Walton, D. (1995). A pragmatic theory of fallacy. Tuscaloosa and London: The University of Alabama Press.

    Google Scholar 

  • Walton, D., & Macagno, F. (2006). Argumentative reasoning patterns. In Proceedings of ECAI conference 2006 (pp. 1–5). Riva del Garda, 28 August–2 September 2006. Amsterdam: IOS Press.

  • Walton, D., & Reed, C. (2005). Argumentation schemes and enthymemes. Synthese, 145, 339–370.

    Article  Google Scholar 

  • Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. New York: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Institute of Education Sciences (ICE, Universitat de Barcelona), project REDICE2010 1001-06, and by the Association for Research in Education Sciences (ARCE, Universitat de Barcelona), project ARCE2011, both coordinated by Marina Castells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Konstantinidou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konstantinidou, A., Macagno, F. Understanding Students’ Reasoning: Argumentation Schemes as an Interpretation Method in Science Education. Sci & Educ 22, 1069–1087 (2013). https://doi.org/10.1007/s11191-012-9564-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-012-9564-3

Keywords

  • Science Education
  • Background Knowledge
  • Conceptual Change
  • Argument Structure
  • Argumentation Scheme