Skip to main content

Advertisement

Log in

Interactions of Economics of Science and Science Education: Investigating the Implications for Science Teaching and Learning

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

In recent years, there has been upsurge of interest in the applications of interdisciplinary perspectives on science in science education. Within this framework, the implications of the so-called “economics of science” is virtually an uncharted territory. In this paper, we trace a set of arguments that provide a dialectic engagement with two conflicting agendas: (a) the broadening of science education to include the contextual positioning of science including economical dimensions of science, and (b) the guarding of the proliferation and reinforcement of those aspects of economics of science such as commodification of scientific knowledge that embraces inequity and restricted access to the products of the scientific enterprise. Our aim is broadly to engage, as science education researchers, in the debates in economics of science so as to investigate the reciprocal interactions that might exist with science education. In so doing, we draw out some recommendations whereby the goals of science education might provide as much input into the intellectual debates within philosophy of science on issues related to the commercialisation and commodification of scientific knowledge. We explore some implications of commodification of science in the context of modelling and argumentation in science education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Diamond (2008), Irzik (2007, 2010), Nowotny et al. (2001), Radder (2010) and Wibble (1998).

References

  • Abell, S. K., & Lederman, N. G. (Eds.). (2007). Handbook of research on science education. Mahwah, NJ: Lawrence Erlbaum Associations.

    Google Scholar 

  • Aduriz-Bravo, A. (2013). A semantic view of scientific models for science education. Science & Education.

  • Aikenhead, G. S. (2003). STS education: a rose by any other name. In R. Cross (Ed.), A vision for science education: Responding to the world of Peter J. Fensham. London: Routledge Press.

    Google Scholar 

  • Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.

    Article  Google Scholar 

  • Brown, B., Reveles, J., & Kelly, G. (2005). Scientific literacy and discursive identity: A theoretical framework for understanding science education. Science Education, 89, 779–802.

    Article  Google Scholar 

  • Bryant, R. (2001). Discovery and decision: Exploring the metaphysics and epistemology of scientific classification. Madison, NJ: Fairleigh Dickinson University Press.

    Google Scholar 

  • Carr, M. (1984). Model confusion in chemistry. Research in Science Education, 14, 97–103.

    Google Scholar 

  • Chang, Y., Chang, C., & Tseng, Y. (2010). Trends of science education research: An automatic content analysis. Journal of Science Education and Technology, 19, 315–332. doi:10.1007/s10956-009-9202-2.

    Article  Google Scholar 

  • Christie, M., & Christie, J. (2000). ‘‘Laws’’ and ‘‘theories’’ in chemistry do not obey the rules. In N. Bhushan & S. Rosenfeld (Eds.), Of minds and molecules (pp. 34–50). Oxford: Oxford University Press.

    Google Scholar 

  • Coll, R. K., France, B., & Taylor, I. (2005). The Role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27, 183–198.

    Article  Google Scholar 

  • DfES/QCA. (2006). Science: The national curriculum for England and Wales. London: HMSO.

    Google Scholar 

  • Diamond, A. M. (2008). Economics of science. In S. N. Durlauf and L. E. Blume (Eds.). The new Palgrave dictionary of economics, 2nd ed., Basingstoke.

  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Buckingham: Open University Press.

    Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Duschl, R., Erduran, S., Grandy, R., & Rudolph, J. (2006). Guest editorial: Science studies and science education. Science Education, 90(6), 961–964.

    Article  Google Scholar 

  • Erduran, S. (2006). Promoting ideas, evidence and argument in initial teacher training. School Science Review, 87(321), 45–50.

    Google Scholar 

  • Erduran, S. (2007). Breaking the law: promoting domain-specificity in science education in the context of arguing about the Periodic Law in chemistry. Foundations of Chemistry, 9(3), 247–263.

    Article  Google Scholar 

  • Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jiménez Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 47–69). Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., Ardac, D., & Yakmaci-Guzel, B. (2006). Learning to teach argumentation: Case studies of pre-service secondary science teachers. Eurasia Journal of Mathematics Science and Technology Education, 2(2), 1–14.

    Google Scholar 

  • Erduran, S., & Duschl, R. (2004). Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40, 111–144.

    Article  Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education. Perspectives from classroom-based research. Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2012). Argumentation in science education research: Perspectives from Europe. In D. Jorde & J. Dillon (Eds.). World of Science Education: Research in Science Education in Europe, Sense Publishers, Rotterdam.

  • Erduran, S., & Wong, S. L. (2013). Science curriculum reform on “scientific literacy for all” across national contexts: case studies of curricula from England and Hong Kong. In N. Mansour & R. Wegeriff (Eds.). Science education for diversity in the knowledge society: Theory and practice. Dordrecht: Springer.

  • European Union. (2006). Recommendation of the European parliament and of the council of 18 december 2006 on key competences for lifelong learning. Official Journal of the European Union, 30–12–2006, L 394/10–L 394/18. (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:394:0010:0018:en:PDF).

  • Gaskell, J. P. (1982). Science, technology and society: Issues for science teachers. Studies in Science Education, 9, 33–46.

    Article  Google Scholar 

  • Giere, R. (1997). Understanding scientific reasoning. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Gilbert, J. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130.

    Article  Google Scholar 

  • Gilbert, J., & Boulter, C. (Eds.). (2000). Developing models in science education. Dordrecht: Kluwer.

    Google Scholar 

  • Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, part 1: Horses for courses. International Journal of Science Education, 20(1), 83–97.

    Article  Google Scholar 

  • Gott, R., & Roberts, R. (2004). A written test for procedural understanding: a way forward for assessment in the UK science curriculum? Research in Science and Technological Education, 22(1): 5–21.

    Google Scholar 

  • Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670.

    Article  Google Scholar 

  • Holbrook, J., & Rannikmae, M. (2009). The meaning of scientific literacy. International Journal of Environmental & Science Education, 4(3), 275–288.

    Google Scholar 

  • Irzik, G. (2007). Commercialization of science in a neoliberal world. In A. Bugra & K. Agartan (Eds.). Reading Polanyi for the 21st century: Market economy as a political project palgrave (pp. 135–153). City: Palgrave Macmillan.

  • Irzik, G. (2010). Why should philosophers of science pay attention to the commercialization of academic science? In M. Suárez, M. Dorato & M. Rédei (Eds.) EPSA epistemology and methodology of science launch of the European philosophy of science association (pp. 129–138). doi:10.1007/978-90-481-3263-8_11.

  • Jacob, M. (2003). Rethinking science and commodifying knowledge. Policy Futures in Education, 1(1), 125–142.

    Article  Google Scholar 

  • Jenkins, E. W. (2000). Research in science education: Time for a health check? Studies in Science Education, 35, 1–26.

    Article  Google Scholar 

  • Jiménez Aleixandre, M. P. (2008). Designing argumentation learning environments. In S. Erduran & M. P. Jiménez Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 91–115). Dordrecht: Springer.

    Google Scholar 

  • Jiménez Aleixandre, M. P., Bugallo, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  • Jimenez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: an overview In S. Erduran & M. P. Jiménez Aleixandre (Eds.) Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht: Springer.

  • Justi, R. (2000). Teaching with historical models. In J. K. Gilbert & C. J. Boutler (Eds.), Developing models in science education (pp. 209–226). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Justi, R., & Gilbert, J. (2002). Models and modelling in chemical education. In J. K. Gilbert, O. D. Jong, R. Justy, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 47–68). Dordrecht: Kluwer.

  • Justi, R., & Gilbert, J. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369–1386.

    Article  Google Scholar 

  • Knorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge: Harvard University Press.

    Google Scholar 

  • La Velle, B. L., & Erduran, S. (2007). Argument and developments in the science curriculum. School Science Review, 88(324), 31–40.

    Google Scholar 

  • Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84, 71–94.

    Article  Google Scholar 

  • Lave, J., & Wegner, E. (1991). Situated learning. Legitimate peripheral participation. Cambridge: University of Cambridge Press.

    Book  Google Scholar 

  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners conceptions of nature of science. Journal of Research in Science Teaching, 39, 497V521.

    Google Scholar 

  • Lee, M. H., Wu, Y. T., & Tsai, C. C. (2009). Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999–2020.

    Article  Google Scholar 

  • Lemke, J. L. (2004). The literacies of science. In E. W. Saul (Ed.), Crossing borders in literacy and science instruction (pp. 33–47). Newark, DE: International Reading Association.

    Google Scholar 

  • Matthews, M. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.

    Google Scholar 

  • McComas, W. (1998). The principal elements of the nature of science: Dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 53–70). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Ministerio de Educacióny Ciencia, Republic of Chile (MEC). (2004). Estudio y comprensión de la naturaleza. Santiago de Chile: Author.

    Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Norris, S., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224–240.

    Article  Google Scholar 

  • Nowotny, H., Scott, P., & Gibbons, M. (2001). Re-thinking science: knowledge and the public in an age of uncertainty. Cambridge: Polity Press.

    Google Scholar 

  • OECD. (2006). PISA 2006. Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Paris: Author.

    Book  Google Scholar 

  • Ozdem, Y., Cakiroglu, J., Ertepinar, H., & Erduran, S. (2012). The nature of pre-service science teachers’ argumentation in inquiry-oriented laboratory context. International Journal of Science Education. doi:10.1080/09500693.2011.611835

  • Radder, H. (2010). The commodification of academic research: analyses, assessment, alternatives. Pittsburgh: University of Pittsburg Press.

    Google Scholar 

  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sadler, T. (Ed.). (2011). Socio-scientific issues in the classroom. Dordrecht: Springer.

    Google Scholar 

  • Salomon, J. (1985). Science as a commodity-policy changes, issues and threats. In M. Gibbons & B. Wittrock (Eds.), Science as a commodity. Longman.

  • Scerri, E. R., & McIntyre, L. (1997). The case for the philosophy of chemistry. Synthese, 111, 213–232.

    Article  Google Scholar 

  • Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260.

    Google Scholar 

  • Wibble, J. R. (1998). The Economics of science: Methodology and epistemology as if economics really mattered. London: Routledge.

    Google Scholar 

  • Woody, A. (2000). Putting quantum mechanics to work in chemistry: The Power of diagrammatic representation, Philosophy of Science, 67 (Proceedings): S612–S627.

  • Yager, R. E. (1996). History of science/technology/society as reform in the United States. In R. E. Yager (Ed.), Science/technology/society as reform in science education (pp. 3–15). Albany, NY: SUNY Press.

    Google Scholar 

  • Zeidler, D., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: a research-based framework for socioscientific issues education. Science Education, 357–377.

  • Ziman, J. M. (1991). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge University Press.

  • Ziman, J. (1994). The rationale of STS education is in the approach. In J. Solomon & G. Aikenhead (Eds.), STS education: International perspectives on reform. New York: Teachers College Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Erduran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erduran, S., Mugaloglu, E.Z. Interactions of Economics of Science and Science Education: Investigating the Implications for Science Teaching and Learning. Sci & Educ 22, 2405–2425 (2013). https://doi.org/10.1007/s11191-012-9519-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-012-9519-8

Keywords

Navigation