Advertisement

Science & Education

, Volume 22, Issue 2, pp 221–240 | Cite as

Biological Essentialism and the Tidal Change of Natural Kinds

  • John S. WilkinsEmail author
Article

Abstract

The vision of natural kinds that is most common in the modern philosophy of biology, particularly with respect to the question whether species and other taxa are natural kinds, is based on a revision of the notion by Mill in A System of Logic. However, there was another conception that Whewell had previously captured well, which taxonomists have always employed, of kinds as being types that need not have necessary and sufficient characters and properties, or essences. These competing views employ different approaches to scientific methodologies: Mill’s class-kinds are not formed by induction but by deduction, while Whewell’s type-kinds are inductive. More recently, phylogenetic kinds (clades, or monophyletic-kinds) are inductively projectible, and escape Mill’s strictures. Mill’s version represents a shift in the notions of kinds from the biological to the physical sciences.

Keywords

Natural Kind Essential Character Inductive Generalization Homeostatic Property Cluster Individual Essence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am grateful to Michael Devitt, Gordon McOuat, Polly Winsor, Paul Griffiths, Karola Stotz, and Dominic Murphy for critical comments and suggestions. I also thank Philip Sloan for his discussions at ISHPSSB 2009, and the audience there. This work was undertaken with funding from an Australian Research Council postdoctoral fellowship DP0984826, based on work done under a previous ARC grant FF0457917.

References

  1. Avise, J. C., & Ball, R. M., Jr. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. In D. Futuyma & J. Atonovics (Eds.), Oxford surveys in evolutionary biology (pp. 45–67). Oxford: Oxford University Press.Google Scholar
  2. Barrett, L. F. (2006). Are Emotions Natural Kinds? Perspectives on Psychological Science, 1(1), 28–58.CrossRefGoogle Scholar
  3. Barrett, L. F., Lindquist, K. A., Bliss-Moreau, E., Duncan, S., Gendron, M., Mize, J., et al. (2007). Of mice and men: Natural kinds of emotions in the mammalian brain? A response to Panksepp and Izard. Perspectives on Psychological Science, 2(3), 297–311.CrossRefGoogle Scholar
  4. Bentham, G. (1827). An outline of a new system of logic. With a critical examination of Dr. Whately’s “Elements of Logic’’. London: Hunt and Clark.Google Scholar
  5. Bentham, G. (1832–1836). Labiatarum genera et species: Or, A description of the genera and species of plants of the order Labiatæ; with their general history, characters, affinities, and geographical distribution. London: J. Ridgeway and sons.Google Scholar
  6. Bentham, J. (1983). In M. J. Smith & W. H. Burston (Eds.), Chrestomathia. Oxford, New York: Clarendon Press, Oxford University Press.Google Scholar
  7. Bentham, G., & Hooker, J. D. (1920). Handbook of the British flora: A description of the flowering plants and ferns indigenous to, or naturalized in, the British Isles. For the use of beginners and amateurs (Revised, 5th ed.). London: L. Reeve & Co. (Original edition, 1858).Google Scholar
  8. Blomberg, S. P., & Garland, T. (2002) Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899–910.Google Scholar
  9. Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. Wilson (Ed.), Species, new interdisciplinary essays (pp. 141–186). Cambridge, MA: Bradford/MIT Press.Google Scholar
  10. Camardi, G. (2001). Richard Owen, morphology and evolution. Journal of the History of Biology, 34(3), 481.CrossRefGoogle Scholar
  11. Charland, L. C. (2002). The natural kind status of emotion. The British Journal for the Philosophy of Science, 53(4), 511–537.CrossRefGoogle Scholar
  12. Charles, D. (2002). Aristotle on meaning and essence. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. Chung, C. (2003). On the origin of the typological/population distinction in Ernst Mayr’s changing views of species, 1942–1959. Studies in History and Philosophy of Biological and Biomedical Sciences, 34, 277–296.CrossRefGoogle Scholar
  14. Cuvier, G. (1812). Discours préliminaire. In Recherches sur les ossemens fossiles de quadrupèdes. Paris: Deterville.Google Scholar
  15. Cuvier, G. (1825). Discours sur les révolutions de la surface du globe: et sur les changements qu’elles ont produits dans le règne animal (3e ed.). Paris: G. Dufour et E. d’Ocagne.Google Scholar
  16. Cuvier, G. (1831). A discourse on the revolutions of the surface of the globe, and the changes thereby produced in the animal kingdom: Tr. from the French with illustrations and a glossary. Philadelphia: Carey & Lea.Google Scholar
  17. de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879–886.CrossRefGoogle Scholar
  18. Desmond, A. J. (1984). Archetypes and ancestors: Palaeontology in Victorian London, 1850–1875. Chicago: University of Chicago Press.Google Scholar
  19. Desmond, A. J. (1989). The politics of evolution: Morphology, medicine, and reform in radical London, science and its conceptual foundations. Chicago: University of Chicago Press.Google Scholar
  20. Devitt, M. (2005). Rigid application. Philosophical Studies, 125, 139–165.CrossRefGoogle Scholar
  21. Devitt, M. (2008). Resurrecting biological essentialism. Philosophy of Science, 75(3), 344–382.CrossRefGoogle Scholar
  22. Devitt, M. (2010). Species have (partly) intrinsic essences. Philosophy of Science, 77(5), 648–661.CrossRefGoogle Scholar
  23. Dewey, J. (1920). Reconstruction in philosophy. New York: Henry Holt and Co.Google Scholar
  24. Dewey, J. (1997). The influence of Darwin on philosophy and other essays, Great books in philosophy. Amherst, NY: Prometheus Books.Google Scholar
  25. Dupré, J. (1981). Natural kinds and biological taxa. The Philosophical Review, 90(1), 66–90.CrossRefGoogle Scholar
  26. Eco, U. (1999). Kant and the platypus: Essays on language and cognition. London: Vintage/Random House.Google Scholar
  27. Farber, P. L. (1976). The type-concept in zoology during the first half of the nineteenth century. Journal of the History of Biology, 9(1), 93–119.CrossRefGoogle Scholar
  28. Fitch, W. M. (2000). Homology: A personal view on some of the problems. Trends in Genetics, 16, 227–231.CrossRefGoogle Scholar
  29. Ghiselin, M. T. (1974). A radical solution to the species problem. Systematic Zoology, 23, 536–544.CrossRefGoogle Scholar
  30. Ghiselin, M. T. (1997). Metaphysics and the origin of species. Albany: State University of New York Press.Google Scholar
  31. Goodman, Nelson. (1954). Fact, fiction and forecast. London: University of London, The Athlone Press.Google Scholar
  32. Gregg, J. R. (1954). The language of taxonomy: An application of symbolic logic to the study of classificatory systems. New York: Columbia University Press.Google Scholar
  33. Griffiths, P. E. (1999). Squaring the circle: Natural kinds with historical essences. In R. A. Wilson (Ed.), Species, new interdisciplinary essays (pp. 209–228). Cambridge, MA: Bradford/MIT Press.Google Scholar
  34. Griffiths, P. E. (2004). Is emotion a natural kind? In R. C. Solomon (Ed.), Thinking about feeling: Contemporary philosophers on emotions (pp. 233–249). Oxford, NY: Oxford University Press.Google Scholar
  35. Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320(5884), 1763–1768.CrossRefGoogle Scholar
  36. Hacking, I. (1991). A tradition of natural kinds. Philosophical Studies, 61, 109–126.CrossRefGoogle Scholar
  37. Hettema, H., & Kuipers, T. A. F. (1988). The periodic table—its formalization, status, and relation to atomic theory. Erkenntnis, 28(3), 387–408.Google Scholar
  38. Hull, D. L. (1965). The effect of essentialism on taxonomy: Two thousand years of stasis. British Journal for the Philosophy of Science, 15, 314–326, 316, 311–318.Google Scholar
  39. Hull, D. L. (1976). Are species really individuals? Systematic Zoology, 25, 174–191.CrossRefGoogle Scholar
  40. Hull, D. L. (1977). The ontological status of species as evolutionary units. In R. Butts & J. Hintikka (Eds.), Foundational problems in special sciences (pp. 91–102). Dordrecht, Holland: D. Reidel.CrossRefGoogle Scholar
  41. Hull, D. L. (1979). The limits of cladism. Systematic Zoology, 28, 416–440.CrossRefGoogle Scholar
  42. Hull, D. L. (1982). Exemplars and scientific change. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1982, 479–503.Google Scholar
  43. Hull, D. L. (1984). Cladistic theory: Hypotheses that blur and grow. In T. Duncan & T. Stuessy (Eds.), Cladistic perspectives on the reconstruction of evolutionary history (pp. 5–23). New York: Columbia University Press.Google Scholar
  44. Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. Chicago: University of Chicago Press.Google Scholar
  45. Hull, D. L. (1994). Contemporary systematic philosophies. In E. Sober (Ed.), Conceptual issues in evolutionary biology (pp. 295–330). Cambridge, MA: MIT Press.Google Scholar
  46. Huxley, J. (1957). New bottles for new wine. London: Chatto and Windus.Google Scholar
  47. Jevons, W. S. (1878). The principles of science: A treatise on logic and scientific method (2nd ed.). London: Macmillan. (Original edition, 1873).Google Scholar
  48. Joseph, H. W. B. (1916). An introduction to logic (2nd ed.). Oxford: Clarendon Press. (Original edition, 1906).Google Scholar
  49. Koerner, L. (1999). Linnaeus: Nature and nation. Cambridge, MA: Harvard University Press.Google Scholar
  50. Lankester, E. R. (1870). On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annals and Magazine of Natural History, 4(6), 34–43.Google Scholar
  51. LaPorte, J. (1996). Chemical kind term reference and the discovery of essence. Nous, 30(1), 112–132.CrossRefGoogle Scholar
  52. Laubichler, M. D. (2000). Homology in development and the development of the homology concept. American Zoologist, 40(5), 777–788.CrossRefGoogle Scholar
  53. Leibniz, G. W. (1996). New essays on human understanding (P. Remnant & J. Bennett, Trans). Cambridge UK: Cambridge University Press. (Original edition, 1765).Google Scholar
  54. Levit, G. S., & Meister, K. (2006). The history of essentialism vs. Ernst Mayr’s ‘‘Essentialism Story’’: A case study of German idealistic morphology. Theory in Biosciences, 124, 281–307.CrossRefGoogle Scholar
  55. Lindley, J. (1830). An introduction to the natural system of botany: Or, A systematic view of the organisation, natural affinities, and geographical distribution, of the whole vegetable kingdom: together with the uses of the most important species in medicine, the arts, and rural or domestic economy (1st ed.). London: Longman, Rees, Orme, Brown, and Green.Google Scholar
  56. Locke, J. (1690). An essay concerning human understanding. London: Thomas Basset.Google Scholar
  57. Macleay, W. S. (1819). Horae entomologicae, or, essays on the annulose animals. London: Printed for S. Bagster.CrossRefGoogle Scholar
  58. Maund, B. (2008). Color. The Stanford encyclopedia of philosophy (Fall). http://plato.stanford.edu/archives/fall2008/entries/color/.
  59. Mayr, E. (1978). Origin and history of some terms in systematic and evolutionary biology. Systematic Zoology, 27(1), 83–88.CrossRefGoogle Scholar
  60. McOuat, G. R. (1996). Species, rules and meaning: the politics of language and the ends of definitions in 19th century natural history. Studies in History and Philosophy of Science Part A, 27, 473–519.CrossRefGoogle Scholar
  61. McOuat, G. R. (2001). Cataloguing power: Delineating ‘competent naturalists’ and the meaning of species in the British Museum. The British Journal for the History of Science, 34, 1–28.Google Scholar
  62. McOuat, G. R. (2003). The logical systematist: George Bentham and his Outline of a new system of logic. Archives of Natural History, 30(2), 203–223.CrossRefGoogle Scholar
  63. McOuat, G. R. (2009). The origins of natural kinds: Keeping “Essentialism” at bay in the age of reform. Intellectual History Review, 19(2009), 211–230.CrossRefGoogle Scholar
  64. Meyer-Abich, A. (1926). Logik der Morphologie, im Rahmen einer Logik der gesamten Biologie. Berlin: Nelson, E. C.CrossRefGoogle Scholar
  65. Mill, J. S. (1889). An examination of Sir William Hamilton’s philosophy, and of the principal philosophical questions discussed in his writings (6th ed.). London, New York: Longman, Green and Co.Google Scholar
  66. Mill, J. S. (2006a). A system of logic ratiocinative and inductive, being a connected view of the principles of evidence and the methods of scientific investigation (books I–III). In J. M. Robson (Ed.), The collected works of John Stuart mill (33 Vols., Vol. VII). Toronto, London: University of Toronto Press, Routledge and Kegan Paul. (Original edition, 1974).Google Scholar
  67. Mill, J. S. (2006b). A system of logic ratiocinative and inductive, being a connected view of the principles of evidence and the methods of scientific investigation (books IV–VI and appendices). In J. M. Robson (Ed.), The collected works of John Stuart mill (33 Vols., Vol. VIII). Toronto, London: University of Toronto Press, Routledge and Kegan Paul (Original edition, 1974).Google Scholar
  68. Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT Press.Google Scholar
  69. Milne-Edwards, H. (1844). Considérations sur quelques principes relatifs à la clasification naturelle des animaux, et plus particulièrement sur la distribution méthodique des mammifères. Annales des Sciences Naturelles (Zoologie), 3d(1), 65–99.Google Scholar
  70. Mindell, D. P., & Meyer, A. (2001). Homology evolving. Trends in Ecology & Evolution, 16(8), 434–440.CrossRefGoogle Scholar
  71. Müller-Wille, S., & Orel, V. (2007). From Linnaean species to Mendelian factors: Elements of hybridism, 1751–1870. Annals of Science, 64(2), 171–215.CrossRefGoogle Scholar
  72. Nelson, G. J. (1978). Ontogeny, phylogeny, paleontology, and the biogenetic law. Systematic Zoology, 27, 324–345.CrossRefGoogle Scholar
  73. Numbers, R. L. (2009). Galileo goes to jail: And other myths about science and religion. Cambridge, MA: Harvard University Press.Google Scholar
  74. Oken, L. (1847). Elements of physiophilosophy (A. Tulk, Trans.) London: The Ray Society. (Original edition, Lehrbuch der Naturphilosophie (Jena: Friedrich Frommann, 1831, 2nd ed.)).Google Scholar
  75. Owen, R. (1843). Lectures on the comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons, in 1843. By Richard Owen. From notes taken by William White Cooper and revised by Professor Owen. London: Longman, Brown, Green, and Longmans.CrossRefGoogle Scholar
  76. Owen, R. (1848). The archetype and homologies of the vertebrate skeleton. London: J. van Voorst.Google Scholar
  77. Parsons, T. (1969). Essentialism and quantified modal logic. The Philosophical Review, 78(1), 35–52.CrossRefGoogle Scholar
  78. Popper, K. R. (1957). The poverty of historicism. London: Routledge and Kegan Paul.Google Scholar
  79. Popper, K. R. (1959). The logic of scientific discovery (K. Popper, J. Freed and L. Freed, Trans.). London: Hutchinson.Google Scholar
  80. Quine, W. V. O. (1948). On what there is. Review of Metaphysics, 2(5), 21–38.Google Scholar
  81. Quine, W. V. O. (1953). From a logical point of view: 9 Logico-philosophical essays. Cambridge, MA: Harvard University Press.Google Scholar
  82. Quine, W. V. O. (1969a). Natural kinds. In N. Rescher (Ed.), Essays in honour of Carl G. Hempel: A tribute on the occasion of his sixty-fifth birthday (pp. 5–27). Dordrecht, Holland: Springer.Google Scholar
  83. Quine, W. V. O. (1969b). Ontological relativity and other essays. New York: Columbia University Press.Google Scholar
  84. Ray, J. (1686). Historia plantarum species hactenus editas aliasque insuper multas noviter inventas & descriptas complectens : In qua agitur primò De Plantis in genere, Earúmque Partibus, Accidentibus & Differentiis; Deinde Genera omnia tum summa tum subalterna ad Species usque infimas, Notis suis certis & Characteristicis Definita, Methodo Naturæ vestigiis insistente disponuntur; Species singulæ accurate describuntur, obscura illustrantur, omissa supplentur, superflua resecantur, Synonyma necessaria adjiciunctur; Vires denique & Usus recepti compendiò traduntur/Auctore Joanne Raio, E Societate Regiâ,… (3 Vols., Vol. I). Londini: Clark.Google Scholar
  85. Reichenbach, H. (1949). The theory of probability, an inquiry into the logical and mathematical foundations of the calculus of probability (2nd ed.). Berkeley: University of California Press.Google Scholar
  86. Richardson, E. C. (1901). Classification, theoretical and practical I. The order of the sciences (2 Vols., Vol. 1). New York: Scribner.Google Scholar
  87. Rupke, N. A. (1994). Richard Owen: Victorian naturalist. New Haven, CT: Yale University Press.Google Scholar
  88. Salmon, W. C. (1991). Hans Reichenbach’s vindication of induction. Erkenntnis, 35(1), 99–122.Google Scholar
  89. Scerri, E. R. (2007). The periodic table: Its story and its significance. New York: Oxford University Press.Google Scholar
  90. Simpson, J. Y. (1925). Landmarks in the struggle between science and religion. London: Hodder and Stoughton.Google Scholar
  91. Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University Press.Google Scholar
  92. Snyder, L. J. (2006). Reforming philosophy: A Victorian debate on science and society. Chicago: University of Chicago Press.Google Scholar
  93. Sober, E. (1999). Modus Darwin. Biology and Philosophy, 14(2), 253–278.CrossRefGoogle Scholar
  94. Sober, E. (2008). Evidence and evolution: the logic behind the science. Cambridge, UK, New York: Cambridge University Press.CrossRefGoogle Scholar
  95. Stafleu, F. A. (1963). Adanson and the « Familles des plantes». In G. H. M. Lawrence (Ed.), Adanson: The bicentennial of Michel Adanson’s « Familles des plantes» (pp. 123–264). Pittsburgh, PA: Carnegie Institute of Technology.Google Scholar
  96. Stevens, P. F. (1994). The development of biological systematics: Antoine-Laurent de Jussieu, nature, and the natural system. New York: Columbia University Press.Google Scholar
  97. Swainson, W. (1834). Preliminary discourse on the study of natural history. London: Longman, Rees, Orme, Brown, Green and Longman.CrossRefGoogle Scholar
  98. Swainson, W. (1835). A treatise on the geography and classification of animals. In R. D. Lardner (Ed.), The cabinet cyclopaedia: Natural history. London: Longman Rees, Orme, Brown & Longman.Google Scholar
  99. Templeton, A. R. (1989). The meaning of species and speciation: A genetic perspective. In D. Otte & J. Endler (Eds.), Speciation and its consequences (pp. 3–27). Sunderland, MA: Sinauer.Google Scholar
  100. Venn, J. (1866). The logic of chance: An essay on the foundations and province of the theory of probability, with especial reference to its application to moral and social science. London: Macmillan.Google Scholar
  101. Walsh, D. (2006). Evolutionary essentialism. The British Journal for the Philosophy of Science, 57(2), 425–448.CrossRefGoogle Scholar
  102. Whately, R. (1875). Elements of logic (9th (octavo) ed.). London: Longmans, Green & Co. (Original edition, 1826).Google Scholar
  103. Whewell, W. (1840). The philosophy of the inductive sciences: Founded upon their history (2 Vols.). London: John W. Parker.Google Scholar
  104. Whewell, W. (1847). The philosophy of the inductive sciences: Founded upon their history (2nd ed., 2 Vols.). London: John W. Parker.Google Scholar
  105. Whewell, W. (1849). Of induction with especial reference to J.S. Mill’s system of logic. London: John W. Parker.Google Scholar
  106. Whewell, W. (1884). History of the inductive sciences, from the earliest to the present time (3rd ed., 2 Vols.). New York: D. Appleton.Google Scholar
  107. Wilkins, J. S. (2009). Species: A history of the idea, species and systematics. Berkeley: University of California Press.Google Scholar
  108. Wimsatt, W. C. (1986). Developmental constraints, generative entrenchment, and the innate-acquired distinction. In W. Bechtel (Ed.), Integrating scientific disciplines (pp. 185–208). Dordrecht: Martinus-Nijhoff.CrossRefGoogle Scholar
  109. Winsor, M. P. (2000). Species, demes, and the omega taxonomy: Gilmour and the new systematics. Biology and Philosophy, 15(3), 349–388.CrossRefGoogle Scholar
  110. Winsor, M. P. (2003). Non-essentialist methods in pre-Darwinian taxonomy. Biology and Philosophy, 18, 387–400.CrossRefGoogle Scholar
  111. Winsor, M. P. (2004). Setting up milestones: Sneath on Adanson and Mayr on Darwin. In D. M. Williams & P. L. Forey (Eds.), Milestones in systematics: Essays from a symposium held within the 3rd systematics association biennial meeting, September 2001 (pp. 1–17). London: Systematics Association.Google Scholar
  112. Winsor, M. P. (2006). The creation of the essentialism story: An exercise in metahistory. History and Philosophy of the Life Sciences, 28, 149–174.Google Scholar
  113. Woodger, J. H. (1937). The axiomatic method in biology. Cambridge UK: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of SydneySydneyAustralia

Personalised recommendations