Skip to main content

Advertisement

Log in

Entrepreneurship and structural economic transformation

  • Published:
Small Business Economics Aims and scope Submit manuscript

Abstract

This paper provides an endogenous growth model to illuminate the role of entrepreneurial start-up firms in structural economic transformation. We follow the Lewis-model distinction between a traditional and modern sector and underpin this distinction with micro-foundations. We specify mature and start-up entrepreneurs and make a distinction between survivalist self-employment activities in the traditional sector and opportunity-driven entrepreneurship in the modern. The model shows how opportunity-driven entrepreneurship can drive structural transformation in both the modern and traditional sectors through innovation and the provision of intermediate inputs and services (which permits greater specialization in manufacturing) and by increasing employment and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. In our model, growth and structural change are driven by new start-ups, and we highlight this as a mechanism of economic development. We abstract from considerations of growth of existing firms and their impact on change, which as shown by Henrekson and Johansson (2008) may also be an important source of transformation. The general contribution of entrepreneurship to economic development is explored in Naudé (2008).

  2. Quadrini (2000) finds empirical evidence that entrepreneurs indeed have much higher savings rates than workers.

  3. The formal structure of the macro-dynamic process of the modern sector is close to an endogenous growth model of the Romer-type (Romer 1987, 1990).

  4. The matching approach has been applied to various fields in economics. Representative references for the labor market are Montgomery (1991), Mortensen and Pissarides (1999), Acemoglu and Shimer (2000) or Pissarides (2000); general coordination failures are provided by Diamond (1982) or Cooper and Andrew (1988); an application to the theory of money exchange is presented by Diamond (1984), or Kivotaki and Wright (1989 ).

  5. In labour market matching models, the number of vacancies is determined by solving an intertemporal optimization problem. An Accounting of search and administrative costs leads to an optimal number of vacancies offered to the market.

  6. Note that in Pissarides (1990, 2000) tightness is defined reciprocal to the definition here. Here we model tightness from the viewpoint of the entrepreneurs trying to find a contract for their business idea. However, this different representation of the model does not change any of the mechanics.

  7. For an introduction of the matching function in the labor market context see Pissarides (1990). While Chapter 1 introduces the idea, Chapters 4, 7 and 8 extend the fundamental idea to the discussion of factors intensifying the search intensity and improving the matching technology and efficiency. An overview of the discussion of the labour market matching function, including empirical findings, is also given by Petrongolo and Pissarides (2001). In this literature, the number of matches is positively dependent on the number of unemployed looking for a job and the number of vacancies offered.

  8. See, for example, the labour market, Pissarides (1990, p. 5).

  9. We assume a distinction between the start-up of firms in the modern sector and informal self-employment in traditional sector. The former takes place due to opportunities being spotted, whilst the latter reflects survivalist, necessity actions. Our concern in this paper is with the impact of opportunity-driven start-ups on economic development. This is consistent with empirical evidence based on data from the Global Entrepreneurship Monitor (GEM), which finds that only opportunity-driven entrepreneurship is associated with per capita GDP growth (e.g. Wong et al. 2005; Naudé 2009).

  10. See, for example, Galor and Weil (1999, 2000).

  11. With this model we can analyze a variety of aspects concerning entrepreneurial start-ups, sectoral transformation and growth. Due to space limitation we will not illustrate these here. The interested reader is referred to Gries and Naudé (2008).

References

  • Acemoglu, D., & Shimer, R. (2000). Wage and technology dispersion. Review of Economic Studies, 67(4), 585–607.

    Article  Google Scholar 

  • Bonnet, J., Cieply, S., & Dejardin, M. (2005). Financial constraints on new firms: Looking for regional disparities. Discussion paper no 3705. Jena: Max Planck Institute of Economics.

  • Chenery, H. B. (1960). Patterns of industrial growth. American Economic Review, 50, 624–654.

    Google Scholar 

  • Ciccone, A., & Matsuyama, K. (1996). Start-up costs and pecuniary externalities as barriers to economic development. Journal of Development Economics, 4, 33–59.

    Article  Google Scholar 

  • Cooper, R., & Andrew, J. (1988). Coordinating coordination failures in Keynesian models. Quarterly Journal of Economics, 103(3), 441–463.

    Article  Google Scholar 

  • Dawson, P., & Triffin, R. (1998). Is there a long-run relationship between population growth and living standards? The case of India. Journal of Development Studies, 34, 149–156.

    Article  Google Scholar 

  • Diamond, P. A. (1982). Wage determination and efficiency in search equilibrium. Review of Economic Studies, 49(2), 217–227.

    Article  Google Scholar 

  • Diamond, P. A. (1984). Money in search equilibrium. Econometrica, 52(1), 1–20.

    Article  Google Scholar 

  • Dias, J., & McDermott, J. (2006). Institutions, education, and development: The role of entrepreneurs. Journal of Development Economics, 80, 299–328.

    Article  Google Scholar 

  • Easterlin, R. (1967). Effects of population growth in the economic development of developing countries. The Annals of the American Academy of Political & Social Science, 369, 98–108.

    Article  Google Scholar 

  • Ethier, W. J. (1982). National and international returns to scale in the modern theory of international trade. American Economic Review, 72(3), 389–405.

    Google Scholar 

  • Faria, J. R., León-Ledesma, M. A., & Sachsida, A. (2006). Population and income: Is there a puzzle? Journal of Development Studies, 42(6), 909–917.

    Article  Google Scholar 

  • Galor, O., & Weil, D. (1999). From Malthusian stagnation to modern growth. American Economic Review, 89, 150–154.

    Google Scholar 

  • Galor, O., & Weil, D. (2000). Population, technology, and growth: From the Malthusian regime to the demographic transition and beyond. American Economic Review, 90, 806–828.

    Article  Google Scholar 

  • Gries, T., & Naudé, W. A. (2008). Entrepreneurship and structural economic transformation. UNU-WIDER Research Paper no. 2008/62. Helsinki: World Institute for Development Economics Research, United Nations University.

  • Hamilton, B. A. (2000). Does entrepreneurship pay? An empirical analysis of the returns to self-employment. Journal of Political Economy, 108(3), 604–631.

    Article  Google Scholar 

  • Henrekson, M., & Johansson, D. (2008). Gazelles as job creators—survey and interpretation of the evidence. IFN Working Paper no. 733. Stockholm: Research Institute for Industrial Economics.

  • Kelley, A., & Schmidt, R. (1994). Population and income change: Recent evidence. World Bank Discussion Paper No. 249. Edinburgh: Blackwell.

  • Kirkpatrick, C., & Barrientos, A. (2004). The Lewis model after 50 Years. Development Economics and Public Policy Working Paper 9. Manchester: Institute for Development Policy and Management, University of Manchester.

  • Kirzner, I. M. (1973). Competition and entrepreneurship. Chicago: University of Chicago Press.

    Google Scholar 

  • Kivotaki, N., & Wright, R. (1989). On money as a medium of exchange. Journal of Political Economy, 97(4), 927–954.

    Article  Google Scholar 

  • Kuznets, S. (1966). Modern economic growth: Rate, structure and spread. New Haven: Yale University Press.

    Google Scholar 

  • Kuznets, S. (1967). Population and economic growth. American Philosophical Society Proceedings, 3, 170–193.

    Google Scholar 

  • Landesmann, M. A., & Stehrer, R. (2006). Goodwin’s structural economic dynamics: Modelling Schumpeterian and Keynesian insights. Structural Change and Economic Dynamics, 17, 501–524.

    Article  Google Scholar 

  • Lewis, W. A. (1954). Economic development with unlimited supplies of labour. The Manchester School, 28(2), 139–191.

    Article  Google Scholar 

  • McMullen, J. S., Plummer, L. A., & Acs, Z. J. (2007). What is an entrepreneurial opportunity? Max Planck Institute Discussion Papers on Entrepreneurship, Growth and Public Policy 1007. Jena: Max Planck Institute of Economics.

  • Mehlum, H., Moene, K., & Torvik, R. (2003). Predator or prey? Parasitic enterprises in economic development. European Economic Review, 47, 275–294.

    Article  Google Scholar 

  • Montgomery, J. D. (1991). Equilibrium wage dispersion interindustry wage differentials. Quarterly Journal of Economics, 106, 163–179.

    Article  Google Scholar 

  • Mortensen, D. T., & Pissarides, C. A. (1999). Job reallocation, employment fluctuations, and unemployment. In M. Woodford & J. B. Taylor (Eds.), Handbook of macroeconomics (pp.1171–1228). Amsterdam: North-Holland Publ.

  • Naudé, W. A. (2007). Peace, prosperity and pro-growth entrepreneurship. WIDER Discussion Paper WDP 2007/02. Helsinki: United Nations University.

  • Naudé, W. A. (2008). Entrepreneurship in economic development. UNU-WIDER Research Paper No. 2008/20. Helsinki: United Nations University.

  • Naudé, W. A. (2009). Out with the sleaze, in with the ease: Insufficient for entrepreneurial development? WIDER Research Paper 2009/01. Helsinki: United Nations University.

  • Nelson, R. R., & Pack, H. (1999). The Asian miracle and modern growth theory. The Economic Journal, 109(457), 416–436.

    Article  Google Scholar 

  • Petrongolo, B., & Pissarides, C. A. (2001). Looking into the black box: A survey of the matching function. Journal of Economic Literature, 39(2), 390–431.

    Google Scholar 

  • Pissarides, C. A. (1990). Equilibrium unemployment theory. Oxford: Basil Blackwell.

  • Pissarides, C. A. (2000). Equilibrium unemployment theory (2nd ed). Oxford: Basil Blackwell.

    Google Scholar 

  • Quadrini, V. (2000). Entrepreneurship, saving and social mobility. Review of Economic Dynamics, 3(1), 1–40.

    Article  Google Scholar 

  • Ranis, G. (1988). Analytics of development: Dualism. In H. B. Chenery & T. N. Srinivasan (Eds.), Handbook of development economics (Vol. 1, pp. 73–92). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Romer, P. M. (1987). Growth based on increasing returns due to specialization. American Economic Review, 77(2), 56–62.

    Google Scholar 

  • Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), 71–102. Part 2.

    Article  Google Scholar 

  • Schultz, T. (1975). The value of the ability to deal with disequilibria. Journal of Economic Literature, 13(3), 827–846.

    Google Scholar 

  • Stiglitz, J. E., & Weiss, A. (1981). Credit rationing in markets with imperfect information. American Economic Review, 71(3), 393–410.

    Google Scholar 

  • Syrquin, M. (1988). Patterns of structural change. In H. B. Chenery & T. N. Srinivasan (Eds.), Handbook of development economics (Vol. 1, pp. 203–273). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Thirlwall, A. (1972). A cross section study of population growth and the growth of output and per capita income in a production function framework. Manchester School, 40, 339–356.

    Article  Google Scholar 

  • Thornton, J. (2001). Population growth and economic growth: Long-run evidence from Latin America. Southern Economic Journal, 68, 464–468.

    Article  Google Scholar 

  • Wong, P. K., Ho, Y. P., & Autio, E. (2005). Entrepreneurship, innovation and economic growth. Evidence from GEM data. Small Business Economics, 24, 335–350.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous referees for their detailed and useful comments. Earlier versions of this paper were presented at the Max Planck Institute of Economics’ Workshop on the Allocation of Entrepreneurship on 4 April 2008 in Jena, Germany and at the UNU-WIDER workshop on Entrepreneurship and Economic Development on 22 August 2008 in Helsinki. We are grateful to the participants of these workshops, and, in particular, to Zoltan Acs, Sameeksha Desai, Mark Sanders, Adam Szirmai, Roy Thurik and Utz Weitzel for comments and suggestions. All errors and omissions remain our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Naudé.

Appendices

Appendices

1.1 Appendix 1: Proof of Proposition 1

Start-up sector: Matching of ideas and opportunities:

Separation of contracts is a positive function of the surplus rate of business ideas

$$ \vartheta = \vartheta (\delta_{N} ) = \delta_{N}^{\zeta } ,\,\;\;\frac{d\vartheta }{{d\delta_{N} }} = \zeta \delta_{N}^{\zeta - 1} > 0. $$

Start-up opportunities in modern sector O:

$$ O = \vartheta N = \delta_{N}^{\zeta } N. $$

Probability of successful start-up

$$ P_{N} = \lambda_{N} {\text{e}}^{{ - \lambda_{N} }} . $$

Contract tightness

$$ \begin{aligned} \theta_{N} = & \Updelta_{N}{/}O = \vartheta^{ - 1} \delta_{N} . \\ \theta_{N} = & \Updelta_{N}{/}O = \left( {\delta_{N}^{\zeta } } \right)^{ - 1} \delta_{N} = \delta_{N}^{1 - \zeta } . \\ \end{aligned} $$

Matching function

$$ \begin{aligned} \lambda_{N} = & \lambda_{N} (\theta_{N} ,\,h) = \theta_{N}^{{ - \varepsilon_{N} }} h^{{\upsilon_{N} }} \;\;0 < \varepsilon_{N} ,\quad \mu_{N} < 1. \\ = & \delta_{N}^{{ - \left( {1 - \zeta } \right)\,\varepsilon_{N} }} h^{{\upsilon_{N} }} . \\ \end{aligned} $$

Business opportunities and start-up matching equilibrium:

$$ \begin{aligned} O\,=\,& \vartheta N \\ \lambda_{N} (\theta_{N} ,\,h)\Updelta_{N}\,=\,& O. \\ \end{aligned} $$
$$ \begin{aligned} \vartheta^{{\varepsilon_{N} }} \delta_{N}^{{ - \varepsilon_{N} }} \alpha^{{\upsilon_{N} }} \delta_{N}\,=\,& \vartheta \\ \delta_{N}^{{\left( {1 - \zeta } \right) - \left( {1 - \zeta } \right)\,\varepsilon_{N} }} h^{{\upsilon_{N} }}\,=\,& 1. \\ \end{aligned} $$

Equilibrium surplus rate of business ideas

$$ \begin{aligned} \delta_{N} = & h^{{ - \tfrac{{\upsilon_{N} }}{{\left( {1 - \varepsilon_{N} } \right)\,\left( {1 - \zeta } \right)}}}} , \\ \frac{{d\delta_{N} }}{dh} = & - \frac{{\upsilon_{N} }}{{\left( {1 - \varepsilon_{N} } \right)\,\left( {1 - \zeta } \right)}}h^{{^{{ - \left( {\tfrac{{\upsilon_{N} }}{{\left( {1 - \varepsilon_{N} } \right)\,\left( {1 - \zeta } \right)}} + 1} \right)}} }} < 0 \\ \end{aligned} $$

Equilibrium contract separation rate

$$ \begin{aligned} \vartheta (\delta_{N} ) = & \delta_{N}^{\zeta } = h^{{ - \tfrac{{\upsilon_{N} \zeta }}{{\left( {1 - \varepsilon_{N} } \right)\,\left( {1 - \zeta } \right)}}}} , \\ \frac{d\vartheta }{dh} = & - \frac{{\upsilon_{N} \zeta }}{{\left( {1 - \varepsilon_{N} } \right)\,\left( {1 - \zeta } \right)}}h^{{ - \left( {\tfrac{{\upsilon_{N} \zeta }}{{\left( {1 - \varepsilon_{N} } \right)\,\left( {1 - \zeta } \right)}} + 1} \right)}} < 0 \\ \end{aligned} $$

1.2 Appendix 2: Proof of Proposition 2

Traditional sector: Wages per capita income and population dynamics.

a) Wage and per capita income in the traditional sector:

$$ \begin{aligned} Y_{T} = & \bar{w}L,\,\;\;\bar{w}\,=\,a_{T} \\ y_{T} = & y_{T} (\bar{w},\,\delta_{T} )\,=\,\frac{{Y_{T} }}{Pop}\,=\,\frac{{a_{T} L}}{{L(1 + \delta_{T} )}}\,=\,\frac{{a_{T} }}{{(1 + \delta_{T} )}} \\ Ey_{T} = & a_{T} \frac{L}{{L + \delta_{T} }} + 0\frac{{\Updelta_{T} }}{{L + \Updelta_{T} }}\,=\,y_{T} \,=\,\frac{{a_{T} }}{{(1 + \delta_{T} )}} \\ \end{aligned} $$

b) Population dynamics: \( \gamma_{L} \, \equiv \,\frac{{\dot{L}}}{L}\, = \,g_{L} (y_{T} )\, = \,\left( {\frac{{a_{T} }}{{(1 + \delta_{T} )}}} \right)^{\varphi } \)with φ < 0

c) Properties of the population dynamics curve in the \( \gamma_{L} \, - \,\delta_{T} \, -\,{\text{diagram}} \) slope:

$$ \begin{aligned} \frac{{d\gamma_{L} }}{{d\delta_{T} }} = & - \varphi \left( {a_{T} (1 + \delta_{T} )^{ - 1} } \right)^{\varphi - 1} a_{T} (1 + \delta_{T} )^{ - 2} \\ = & - \varphi a_{T}^{\varphi } (1 + \delta_{T} )^{{ - \left( {\varphi + 1} \right)}} > 0 \\ \end{aligned} $$

Location:

$$ \frac{{d\gamma_{L} }}{{da_{T} }}\,= \,\varphi a_{T}^{\varphi - 1} (1 + \delta_{T} )^{ - \varphi } < 0 $$
$$ \begin{aligned} \ln \gamma_{L} = & \varphi \ln \left( {\frac{{a_{T} }}{{(1 + \delta_{T} )}}} \right) \\ \frac{{d\gamma_{L} }}{d\varphi }\frac{1}{{\gamma_{L} }} = & \ln \left( {\frac{{a_{T} }}{{(1 + \delta_{T} )}}} \right) > 0\;\;{\text{for}}\;\;\frac{{a_{T} }}{{(1 + \delta_{T} )}} > 1 \\ \end{aligned} $$

1.3 Appendix 3: Proof of Propostion 3

a) Labour market frictions and surplus labour:

separation rate:

$$ V\,=\,\sigma L $$

matching rate:

$$ \begin{aligned} \lambda = & \lambda (\theta_{T} ,\,\gamma_{L} ) = \theta_{T}^{ - \varepsilon } \gamma_{N}^{\upsilon } ,\,\quad \quad \quad \quad \;\;\theta_{T} = \sigma^{ - 1} \delta_{T} \\ = & \lambda (\sigma ,\,\delta_{T} ,\,\gamma_{N} ) = \sigma^{\varepsilon } \delta_{T}^{ - \varepsilon } \gamma_{N}^{\upsilon } \;\;1 < \varepsilon ,\quad 0 < \upsilon < 1. \\ \end{aligned} $$

search and matching equilibrium and equilibrium surplus labor rate:

$$ \begin{aligned} \lambda \Updelta_{T} = & \sigma L \\ \lambda (\sigma ,\,\delta_{T} ,\,\gamma_{L} )\Updelta_{T} = & \sigma L \\ \sigma^{\varepsilon } \delta_{T}^{ - \varepsilon } \gamma_{N}^{\upsilon } \delta_{T} = & \sigma . \\ \end{aligned} $$
$$ \begin{aligned} \sigma^{\varepsilon } \delta_{T}^{1 - \varepsilon } \gamma_{N}^{\upsilon } = & \sigma \\ \delta_{T}^{1 - \varepsilon } = & \sigma^{1 - \varepsilon } \gamma_{N}^{ - \upsilon } \\ \delta_{T}^{1 - \varepsilon } = & \sigma^{1 - \varepsilon } \gamma_{N}^{ - \upsilon } \\ \end{aligned} $$
$$ \delta_{T} \, = \,\delta_{T} (\sigma ,\,\gamma_{N} )\, = \,\sigma \gamma_{N}^{{ - \tfrac{\upsilon }{1 - \varepsilon }}} $$

b) Properties of the surplus labour curve in the \( \gamma_{N} \,-\,\delta_{T} \,-\,{\text{diagram}} \) slope:

$$ \frac{{d\delta_{T} }}{{d\gamma_{N} }}\, = \, - \frac{\upsilon }{1 - \varepsilon }\sigma \gamma_{N}^{{ - \tfrac{\upsilon }{1 - \varepsilon } - 1}} < 0 $$

Location:

$$ \frac{{d\delta_{T} }}{d\sigma }\, = \,\gamma_{N}^{{ - \tfrac{\upsilon }{1 - \varepsilon }}} > 0 $$

1.4 Appendix 4: Proof of Proposition 4

a) Deriving the start-up curve:

Combining (Eq. 20) and (Eq. 17) gives the deposit rate offered to the households

$$ r_{d} \, = \,\left( {\left( {\frac{{\left( {1 - \vartheta \left( h \right)} \right)\left( {1 - \alpha } \right)}}{\varepsilon }H^{2} \alpha^{{\frac{1 + 3\alpha }{1 - \alpha }}} c_{x}^{{ - 2\frac{\alpha }{1 - \alpha }}} A^{{\frac{1}{1 - \alpha } + 1}} } \right)\left( {1 - \vartheta \left( h \right)} \right) - c_{b} \left( {\vartheta \left( h \right)} \right)} \right)\left( {1 + \frac{1}{{B\eta_{{D,r_{d} }} }}} \right) $$

With this deposit rate, and (Eqs. 14, 23) and the Ramsey rule (Eq. 3), we can determine the optimal growth rate of the consumption path and the entrepreneurial start-up growth rate \( \gamma_{N} \) of the modern sector

$$ \begin{aligned} \gamma_{N} = & \frac{1}{\Uptheta }\left[ {\left( {\left( {\begin{array}{*{20}c} {\tfrac{{\left( {1 - \vartheta \left( h \right)} \right)^{2} (1 - \alpha )}}{\varepsilon \left( A \right)}H^{2} } \\ {\left[ {\bar{c}_{x} + \tfrac{{a_{T} }}{{\left( {1 + \delta_{T} } \right)}}} \right]^{{ - 2\tfrac{\alpha }{1 - \alpha }}} } \\ {\alpha^{{\tfrac{1 + 3\alpha }{1 - \alpha }}} A^{{\tfrac{1}{1 - \alpha } + 1}} } \\ \end{array} } \right) - c_{b} \left( {\vartheta \left( h \right)} \right)} \right)\,\left( {1 + \frac{1}{B\eta }} \right) - \rho } \right], \\ = & g_{N} (\mathop {\underbrace {{\delta_{T} ,\,a_{T} }}}\limits_{\text{traditional \ sector}} ,\,\mathop {\underbrace {{H,\,h,\,\bar{c}_{x} ,\,B,\,\Uptheta ,\,\rho }}}\limits_{\text{modern \ sector}} ). \\ \end{aligned} $$

b) Properties of the start-up curve in the \( \gamma_{N} \,-\,\delta_{T} \,-\,{\text{diagram}} \) slope:

$$ \frac{{d\gamma_{N} }}{{d\delta_{T} }}\, = \,\frac{{2\alpha a_{T} \left( {1 - \vartheta \left( h \right)} \right)^{2} (1 - \alpha )}}{{\Uptheta \left( {1 - \alpha } \right)\,\varepsilon }}\left( {\begin{array}{*{20}c} {H^{2} \alpha^{{\tfrac{1 + 3\alpha }{1 - \alpha }}} A^{{\tfrac{1}{1 - \alpha } + 1}} } \\ {\left[ {\bar{c}_{x} + \tfrac{{a_{T} }}{{\left( {1 + \delta_{T} } \right)}}} \right]^{{ - \tfrac{\alpha + 1}{1 - \alpha }}} } \\ \end{array} } \right)\,\left( {1 + \frac{1}{B\eta }} \right) > 0 $$

Location:

$$ \begin{aligned} \frac{{d\gamma_{N} }}{dH} = & \frac{{2\left( {1 - \vartheta \left( h \right)} \right)^{2} (1 - \alpha )}}{\Uptheta \varepsilon }H\alpha^{{\tfrac{1 + 3\alpha }{1 - \alpha }}} c_{x}^{{ - 2\tfrac{\alpha }{1 - \alpha }}} A^{{\tfrac{1}{1 - \alpha } + 1}} \left( {1 + \frac{1}{B\eta }} \right) > 0 \\ \frac{{d\gamma_{N} }}{{da_{T} }} = & - \frac{{2\alpha \left( {1 - \delta_{T} } \right)\,\left( {1 - \vartheta \left( h \right)} \right)^{2} (1 - \alpha )}}{{\Uptheta \left( {1 - \alpha } \right)\,\varepsilon }}\left( {\begin{array}{*{20}c} {H^{2} \alpha^{{\tfrac{1 + 3\alpha }{1 - \alpha }}} A^{{\tfrac{1}{1 - \alpha } + 1}} } \\ {\left[ {\bar{c}_{x} + \tfrac{{a_{T} }}{{\left( {1 + \delta_{T} } \right)}}} \right]^{{ - \tfrac{\alpha + 1}{1 - \alpha }}} } \\ \end{array} } \right)\,\left( {1 + \frac{1}{B\eta }} \right) < 0 \\ \frac{{d\gamma_{N} }}{dh} = & - 2\frac{{\left( {1 - \vartheta \left( h \right)} \right)(1 - \alpha )}}{\varepsilon }H^{2} c_{x}^{{ - 2\tfrac{\alpha }{1 - \alpha }}} \alpha^{{\tfrac{1 + 3\alpha }{1 - \alpha }}} A^{{\tfrac{1}{1 - \alpha } + 1}} \left( {1 + \frac{1}{B\eta }} \right)\,\frac{d\vartheta \left( h \right)}{dh} - \frac{{dc_{b} }}{d\vartheta }\frac{d\vartheta \left( h \right)}{dh} > 0 \\ \end{aligned} $$

1.5 Appendix 5: Proof of Proposition 5

Given the system

$$ \begin{array}{*{20}c} {0 = F_{1} \left( {\delta_{T} ,\,\gamma_{N} ,\,\sigma } \right) = \delta_{T} \left( {\gamma_{N} ,\,\sigma } \right) - \delta_{T} } \hfill & { ( {\text{surplus labour rate)}}} \hfill \\ {0 = F_{2} \left( {\delta_{T} ,\,\gamma_{N} ,\,a_{T} ,\,H, \ldots ,\,\rho } \right) = g_{N} (\delta_{T} ,\,a_{T} ,\,H, \ldots ,\,\rho ) - \gamma_{N} } \hfill & { ( {\text{start-up rate)}}} \hfill \\ {0 = F_{3} \left( {\delta_{T} ,\,\gamma_{L} ,\,a_{T} ,\,\phi } \right) = g_{L} \left( {\delta_{T} ,\,a_{T} ,\,\phi } \right) - \gamma_{L} } \hfill & { ( {\text{population dynamics)}}} \hfill \\ \end{array} $$

we want to solve for the set of implicit functions

$$ \begin{array}{*{20}c} {\tilde{\delta }_{T} = \tilde{\delta }_{T} (a_{T} ,\,H,\,h,\,B,\,\phi ,\,\bar{c}_{x} , \ldots ,\,A,\,\Uptheta ,\,\rho )} \hfill & {\text{surplus labour rate}} \hfill \\ {\tilde{\gamma }_{N} = \tilde{\gamma }_{N} (a_{T} ,\,H,\,h,\,B,\,\phi ,\,\bar{c}_{x} , \ldots ,\,A,\,\Uptheta ,\,\rho )} \hfill & {\text{start-up rate}} \hfill \\ {\tilde{\gamma }_{L} = \tilde{\gamma }_{L} (a_{T} ,\,H,\,h,\,B,\,\phi ,\,\bar{c}_{x} , \ldots ,\,A,\,\Uptheta ,\,\rho )} \hfill & {\text{population dynamics}} \hfill \\ \end{array} $$

a) Partial derivatives of F 1, F 2, F 3 with respect to all relevant variables exist and are continuous: For F 1 we obtain:

$$ \frac{{dF_{1} }}{{d\delta_{T} }}\,= \, - 1,\quad \frac{{dF_{1} }}{{d\gamma_{N} }} = - \frac{\upsilon }{1 - \varepsilon }\sigma \gamma_{N}^{{ - \tfrac{\upsilon }{1 - \varepsilon } - 1}} < 0 $$
$$ \frac{{dF_{1} }}{d\sigma }\, = \,\gamma_{N}^{{ - \tfrac{\upsilon }{1 - \varepsilon }}} ,\quad \frac{{dF_{1} }}{dH}\, = \cdots = \frac{{dF_{1} }}{d\rho } = 0. $$

For \( F_{2} \) we obtain:

$$ \frac{{dF_{2} }}{{d\delta_{T} }}\,= \,\frac{{dg_{N} }}{{d\delta_{T} }},\quad \frac{{dF_{2} }}{{d\gamma_{N} }}\,= \, - 1 $$
$$ \frac{{dF_{2} }}{{da_{T} }} = \frac{{dg_{N} }}{{da_{T} }} < 0,\;\;\frac{{dF_{2} }}{dH} = \frac{{dg_{N} }}{dH} > 0,\;\;\frac{{dF_{2} }}{dh} = \frac{{dg_{N} }}{dh} > 0. $$

For \( F_{3} \) we obtain:

$$ \frac{{dF_{3} }}{{d\delta_{T} }}\,=\,\frac{ - \varphi }{{(1 + \delta_{T} )}}\left( {\frac{{a_{T} }}{{(1 + \delta_{T} )}}} \right)^{\varphi } > 0,\quad \frac{{dF_{3} }}{{d\gamma_{L} }} = - 1 $$
$$ \frac{{dF_{3} }}{{d\alpha_{T} }}\, = \,\frac{\varphi }{{\left( {1 + \delta_{T} } \right)}}\left( {\frac{{a_{T} }}{{\left( {1 + \delta_{T} } \right)}}} \right)^{\varphi - 1} < 0,\;\;\frac{{dF_{3} }}{d\varphi } = \left( {\frac{{a_{T} }}{{\left( {1 + \delta_{T} } \right)}}} \right)^{\varphi } \ln \left( {\frac{{a_{T} }}{{\left( {1 + \delta_{T} } \right)}}} \right) > 0 $$
$$ \frac{{dF_{3} }}{dH} = \cdots = \frac{{dF_{3} }}{d\rho }\, = \,0 $$

b) Jakobian of (Eq. 32) system can be determined by:

$$ \left| {J^{ * } } \right|\, = \,\left| {\begin{array}{*{20}c} { - 1} & {\mathop {\tfrac{{dF_{1} }}{{d\gamma_{N} }}}\limits^{( - )} } & 0 \\ {\tfrac{{dF_{2} }}{{d\delta_{T} }}} & { - 1} & 0 \\ {\mathop {\tfrac{{dF_{3} }}{{d\delta_{T} }}}\limits^{( - )} } & 0 & { - 1} \\ \end{array} } \right| \ne 0 $$

Considering (a) and (b) than there exists an m-dimensional neighbourhood (m is the number of exogenous variables), in which the variables \( \delta_{T} ,\,\gamma_{N} ,\,\gamma_{L} \) are functions of the form

$$ \begin{array}{*{20}c} {\tilde{\delta }_{T} = \tilde{\delta }_{T} (a_{T} ,\,H,\,h,\,B,\,\phi ,\,\bar{c}_{x} , \ldots ,\,A,\,\Uptheta ,\,\rho )} \hfill & {\text{surplus labour rate}} \hfill \\ {\tilde{\gamma }_{N} = \tilde{\gamma }_{N} (a_{T} ,\,H,\,h,\,B,\,\phi ,\,\bar{c}_{x} , \ldots ,\,A,\,\Uptheta ,\,\rho )} \hfill & {\text{start-up rate}} \hfill \\ {\tilde{\gamma }_{L} = \tilde{\gamma }_{L} (a_{T} ,\,H,\,h,\,B,\,\phi ,\,\bar{c}_{x} , \ldots ,\,A,\,\Uptheta ,\,\rho )} \hfill & {\text{population dynamics}} \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gries, T., Naudé, W. Entrepreneurship and structural economic transformation. Small Bus Econ 34, 13–29 (2010). https://doi.org/10.1007/s11187-009-9192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11187-009-9192-8

Keywords

JEL Classifications

Navigation