Skip to main content
Log in

Optimization of Agrobacterial (Agrobacterium tumefaciens) Transformation of Maize Embryogenic Callus

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The method for genetic transformation of maize (Zea mays L.) via embryogenic callus infection with Agrobacterium tumefaciens was developed. Calli were co-cultivated with the overnight culture of A. tumefaciens strain LBA4404 harboring the pBI121 plasmid with the nptII and uidA genes. Thereafter, the sensitivity of calli and regenerated plantlets to kanamycin (Km) was determined. It was shown that kanamycin selection was more efficient at the stage of regenerated plantlets than in callus culture. Both vacuum infiltration at the infection step and preliminary activation of Agrobacterium by acetosyringone or by tobacco leaves exudate increased the frequency of Km-resistant plants. The frequency of Km-resistant plants also varied depending on the morphogenic ability of calli. Polymerase chain reaction confirmed the presence of the nptII gene in the genome of regenerated plants and their progeny. β-Glucuronidase gene expression was observed in roots of T1 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Km:

kanamycin

Cx:

cefotaxime

GUS:

β-glucuronidase

MS me-dium:

Murashige and Skoog nutrient medium

PCR:

polymerase chain reaction

REFERENCES

  1. Potrykus, I., Gene Transfer to Cereals: An Assessment, Biotechnology, 1991, vol. 8, pp. 33–37.

    Google Scholar 

  2. Hooykaas van Slogteren, G.M.S., Hooykaas, P.J.J., and Schilperoort, R.A., Expression of Ti-Plasmid Genes in Monocotyledonous Plants Infected with Agrobacterium tumefaciens, Nature, 1984, vol. 311, pp. 763–764.

    Article  Google Scholar 

  3. Schafer, W., Gorz, A., and Kahl, G., T-DNA Integration and Expression in a Monocot Crop Plant after Induction of Agrobacterium, Nature, 1987, vol. 327, pp. 529–532.

    Article  Google Scholar 

  4. Graves, A.C.F. and Goldman, S.L., The Transformation of Zea mays Seedlings with Agrobacterium tumefaciens, Plant. Mol. Biol., 1986, vol. 7, pp. 43–50.

    Article  Google Scholar 

  5. Grimsley, N., Hohn, T., Davis, J.W., and Hohn, B., Agrobacterium Mediated Delivery of Infectious Maize Streak Virus into Maize Plants, Nature, 1987, vol. 325, pp. 177–179.

    Article  Google Scholar 

  6. Gould, J., Devey, M., Hasegawa, O., Eugenio, C.U., Peterson, G., and Smith, R.H., Transformation of Zea mays L. Using Agrobacterium tumefaciens and the Shoot Apex, Plant Physiol, 1991, vol. 95, pp. 426–434.

    Google Scholar 

  7. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T., High Efficiency Transformation of Maize (Zea mays L.) Mediated by Agrobacterium tumefaciens, Nature Biotech., 1996, vol. 14, pp. 745–750.

    Article  Google Scholar 

  8. Lupotto, E., Reali, A., Passera, S., and Chan, M.T., Maize Elite Inbred Lines Are Susceptible to Agrobacterium tumefaciens-Mediated Transformation, Maydica, 1999, vol. 44, pp. 211–218.

    Google Scholar 

  9. Zhao, Z.Y., Gu, W., Cai, T., and Pierce, D.A., Methods for Agrobacterium-Mediated Transformation, US Patent no. 5981 840, Inventors, 1999, no. 9.

  10. Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z., Xiang, C., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D., and Wang, K., Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System, Plant Physiol., 2002, vol. 129, pp. 13–22.

    Article  PubMed  Google Scholar 

  11. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Google Scholar 

  12. Maniatis, T., Frisch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  13. Draper, J., Scott, R., Armitage, P., and Walden, R., Plant Genetic Transformation and Gene Expression: A Laboratory Manual, Oxford: Blackwell Sci., 1988.

    Google Scholar 

  14. Hansen, G. and Chilton, M.D., Agrolistic Transformation of Plant Cell: Integration of T-Strans Generated in Planta, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 14978–14983.

    Article  PubMed  Google Scholar 

  15. Danilova, S.A. and Dolgikh, Yu.I., The Stimulatory Effect of the Antibiotic Cefotaxime on Plant Regeneration in Maize Tissue Culture, Fiziol. Rast. (Moscow), 2004, vol. 51, pp. 621–625 (Russ. J. Plant Physiol., Engl. Transl., pp. 559–562).

    Google Scholar 

  16. Danilova, S.A. and Dolgikh, Yu.I., Sposob obrabotki embriogennogo kallusa kukuruzy In Vitro (Method for Treatment of Embryogenic Maize Callus In Vitro), Russia Inventor’s Certificate no. 2 200 760, Byull. Izobret., 2003, no. 8.

  17. Malyshenko, S.I., Tyul’kina, L.G., Zvereva, S.D., and Raldugina, G.N., Transgenic Brassica campestris Plants Expressing the gfp Gene, Fiziol. Rast. (Moscow), 2003, vol. 50, pp. 309–315 (Russ. J. Plant Physiol., Engl. Transl., pp. 276–281).

    Google Scholar 

  18. Dekeyser, R.A., Claes, B., Marichal, M., van Montague, M., and Caplan, A., Evaluation of Selectable Markers for Rice Transformation, Plant Physiol., 1989, vol. 90, pp. 217–223.

    Google Scholar 

  19. Stachel, S.E., Messens, E., van Montagu, M., and Zambryski, P., Identification of the Signal Molecules Produced by Wounded Plant Cells That Activate T-DNA Transfer in Agrobacterium tumefaciens, Nature, 1985, vol. 318, pp. 624–629.

    Article  Google Scholar 

  20. Zakharchenko, N.S., Kalyaeva, M.A., and Bur’yanov, Ya.I., Induction of Agrobacterial T-DNA Processing by Exudates of Monocotyledonous Plants, Fiziol. Rast. (Moscow), 1999, vol. 46, pp. 282–291 (Russ. J. Plant Physiol., Engl. Transl., pp. 239–247).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 600–607.

Original Russian Text Copyright © 2005 by Danilova, Dolgikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilova, S.A., Dolgikh, Y.I. Optimization of Agrobacterial (Agrobacterium tumefaciens) Transformation of Maize Embryogenic Callus. Russ J Plant Physiol 52, 535–541 (2005). https://doi.org/10.1007/s11183-005-0079-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0079-5

Key words

Navigation