Skip to main content
Log in

Laser and Electron-Beam Surface Processing on NiTi Shape Memory Alloys: A Review

  • Published:
Russian Physics Journal Aims and scope

The review summarizes the progress achieved in the surface modification of NiTi shape memory alloys (SMAs) with laser and electron beams in terms of their compliance with the requirements for biomedical devices and implants. The main provisions of the standards regulating this area of activity are aggregated. The production routes for manufacturing bulk items from NiTi SMAs are described. Since the formation of surface alloys on NiTi SMAs is now an intensively growing area of research, the influence of additional alloying elements on their functional properties is also discussed. The common patterns of interaction of laser and electron radiation with NiTi SMAs are specified. The typical requirements for surface layer conditions and conventional methods for their modification are reported. The results of various laser processing methods, differing in energy parameters, atmospheres and beam scanning algorithms, are summarized. They include remelting, annealing, nitriding, shock peening, alloying and texturing. In addition, some data on the modification and alloying of the surface layers with high-current pulsed electron beams are integrated. Finally, the aggregated information is compared and analyzed from the point of view of its prospects in these research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Funakubo (Ed.), Shape Memory Alloys. New York, Gordon and Breach Science Publishers (1986).

    Google Scholar 

  2. T. W. Duerig, K. N. Melton, D. Stöckel, and C. M. Wayman, Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, London (1990).

    Google Scholar 

  3. M. Fremond and S. Miyazaki, Shape Memory Alloys. Vienna, Springer (1996). https://doi.org/10.1007/978-3-7091-4348-3.

  4. L. Yahia (Ed.), Shape Memory Implants, Berlin, Springer-Verlag Heidelberg (2000). https://doi.org/10.1007/978-3-642-59768-8.

  5. D. C. Lagoudas (Ed.), Shape Memory Alloys. Modeling and Engineering Applications, New York, Springer (2008). https://doi.org/10.1007/978-0-387-47685-8.

  6. T. Yoneyama, S. Miyazaki (Eds.), Shape Memory Alloys for Biomedical Applications. Cambridge, Woodhead Publishing, 2009.

    Google Scholar 

  7. V. E. Günther (Ed.), Medical Materials and Shape Memory Implants (in 14 volumes). Vol. 1. Shape Memory Medical Materials (in Russian). Tomsk, MITs Publ. House (2011).

  8. K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (Eds.), Shape Memory and Superelastic Alloys. Technologies and Applications, Woodhead Publ. Ltd., Oxford (2011).

  9. F. M. Braz Fernandes (Ed.), Shape Memory Alloys – Processing, Characterization and Applications, Rijeka, InTech (2013). https://doi.org/10.5772/2576.

  10. C. Lexcellent, Shape-Memory Alloys Handbook. Hoboken, John Wiley & Sons (2013).

    Book  Google Scholar 

  11. A. Rao, A. R. Srinivasa, J. N. Reddy, Design of Shape Memory Alloy (SMA) Actuators, Springer, London (2015). https://doi.org/10.1007/978-3-319-03188-0.

    Article  Google Scholar 

  12. A. Ziolkowski, Pseudoelasticity of Shape Memory Alloys. Theory and Experimental Studies, Elsevier, Oxford (2015). https://doi.org/10.1016/C2014-0-00298-5.

  13. A. Czechowicz and S. Langbein (Eds.), Shape Memory Alloy Valves. Basics, Potentials, Design, Springer, (2015). https://doi.org/10.1007/978-3-319-19081-5.

  14. M. H. Elahinia, Shape Memory Alloy Actuators. Design, Fabrication, and Experimental Evaluation., John Wiley & Sons, Chichester (2016).

  15. Q. Sun, R. Matsui, K. Takeda, and E. A. Pieczyska, Advances in Shape Memory Materials. In Commemoration of the Retirement of Professor Hisaaki Tobushi, Springer (2017). https://doi.org/10.1007/978-3-319-53306-3.

  16. H. Y. Kim and S. Miyazaki, Ni-Free Ti-Based Shape Memory Alloys, Elsevier (2018). https://doi.org/10.1016/C2015-0-06056-7.

    Article  Google Scholar 

  17. K. Mehta and K. Gupta, Fabrication and Processing of Shape Memory Alloys, Springer Nature Switzerland AG, Cham (2019). https://doi.org/10.1007/978-3-319-99307-2.

    Article  Google Scholar 

  18. Y. Oshida and T. Tominaga, Nickel-Titanium Materials: Biomedical Applications, Walter de Gruyter, Berlin/Boston (2020). https://doi.org/10.1515/9783110666113.

    Article  Google Scholar 

  19. C. Fang and W. Wang, Shape Memory Alloys for Seismic Resilience, Springer Nature, Singapore (2020). https://doi.org/10.1007/978-981-13-7040-3.

    Article  Google Scholar 

  20. A. Concilio, V. Antonucci, F. Auricchio, L. Lecce, and E. Sacco (Eds.), Shape Memory Alloy. Engineering for Aerospace, Structural, and Biomedical Applications (2nd ed.), Elsevier, Oxford (2021).

General reviews

  1. D. Mantovani, JOM, 52, 36 (2000). https://doi.org/10.1007/s11837-000-0082-4

    Article  Google Scholar 

  2. F. El Feninat, G. Laroche, M. Fiset, and D. Mantovani, Adv. Eng. Mater., 4:3, 91 (2002). https://doi.org/10.1002/1527-2648(200203)4:3<91::AID-ADEM91>3.0.CO;2-B.

  3. I. Uysal, B. Yilmaz, A.O. Atilla, and Z. Evis, Eng. Sci. Technol. Int. J., 36, 101277 (2022). https://doi.org/10.1016/jjestch.2022.101277.

    Article  Google Scholar 

Metallurgy

  1. K. Otsuka and X. Ren, Prog. Mater.Sci., 50 511 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001.

    Article  Google Scholar 

Processing

  1. M. H. Elahmia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Prog. Mater.Sci., 57, 911 (2012). https://doi.org/10.1016/j.pmatsci.2011.11.001.

    Article  Google Scholar 

  2. N. Sharma, K. K. Jangra, and T. Raj, Proc. Inst. Mech. Eng. Pt. L J. Mat. Des. Appl., 232:3, 250 (2018). https://doi.org/10.1177/1464420715622494.

  3. E. Kaya and I. Kaya, A review on machining of NiTi shape memory alloys: the process and post process perspective, Int. J. Adv. Manuf. Technol., 100, 2045 (2019). https://doi.org/10.1007/s00170-018-2818-8.

    Article  Google Scholar 

Nanostructure

  1. S. Prokoshkin, S. Dubinskiy, and V. Brailovski, SMJ, 5, 336 (2019). https://doi.org/10.1007/s40830-019-00241-6.

    Article  Google Scholar 

  2. S. Ashbli and C. C. Menzemer, J. Nanomed. Nanotechnol., 10:2, 529 (2019). https://doi.org/10.35248/2157-7439.19.10.529.

Laser cutting and forming

  1. C. A. Biffi, J. Fiocchi, and A. Tuissi, JMR&T, 19, 472 (2022). https://doi.org/10.1016/j.jmrt.2022.03.146.

    Article  Google Scholar 

Welding and joining

  1. J. P. Oliveira, R. M. Miranda, and F. M. Braz Fernandes, Progr. Mater. Sci., 88, 412 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.008.

  2. M. Mehrpouya, A. Gisario, and M. Elahinia, J. Manuf. Process., 31, 162 (2018). https://doi.org/10.1016/j.jmapro.2017.11.011.

    Article  Google Scholar 

  3. S. R. Parimanik, T. R. Mahapatra, and D. Mishra, A systematic literature review on laser welding of NiTi SMA, Lasers in Manufacturing and Materials Processing 10, 77 (2023). https://doi.org/10.1007/s40516-022-00200-7.

    Article  ADS  Google Scholar 

Additive manufacturing

  1. M. Elahinia, N. S. Moghaddam, M. T. Andani, A. Amerinatanzi, B. A. Bimber, and R. F. Hamilton, Fabrication of NiTi through additive manufacturing: a review, Prog. Mater. Sci., 83, 630 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.001.

    Article  Google Scholar 

  2. K. Safaei, H. Abedi, M. Nematollahi, F. Kordizadeh, H. Dabbaghi, P. Bayati, R. Javanbakht, A. Jahadakbar, M. Elahinia, and B. Poorganji, JOM 73, 3771 (2021). https://doi.org/10.1007/s11837-021-04937-y.

    Article  ADS  Google Scholar 

  3. A. N. Alagha, S. Hussain, and W. Zaki, Mater. Des., 204, 109654 (2021). https://doi.org/10.1016/j.matdes.2021.109654.

    Article  Google Scholar 

  4. S. Parvizi, S. M. Hashemi, F. Asgarinia, M. Nematollahi, and M. Elahinia, Prog. Mater. Sci., 117, 100739 (2021). https://doi.org/10.1016/j.pmatsci.2020.100739

    Article  Google Scholar 

  5. O. A. Mohamed, S. H. Masood, W. Xu, Adv. Manuf., 10, 24 (2022). https://doi.org/10.1007/s40436-021-00376-9.

    Article  Google Scholar 

  6. S. Wei, J. Zhang, L. Zhang, Y. Zhang, B. Song, X. Wang, J. Fan, Q. Liu, and Y. Shi, Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review, IJEM, 5:3, 032001 (2023). https://doi.org/10.1088/2631-7990/acc7d9.

EDM

  1. H. Bisaria and P. Shandilya, Surface integrity aspects for NiTi shape memory alloys during wire electric discharge machining: a review, J. Mater. Res., 35, 537 (2020). https://doi.org/10.1557/jmr.2020.32.

    Article  ADS  Google Scholar 

  2. K. Zadafiya, D. Bandhu, S. Kumari, S. Chatterjee, and K. Abhishek, CIRP-JMST, 32, 217 (2021). https://doi.org/10.1016/j.cirpj.2021.01.003.

    Article  Google Scholar 

  3. S. Dutta, A. K. Singh, B. Paul, and M. K. Paswan, J. Braz. Soc., 44, 557 (2022). https://doi.org/10.1007/s40430-022-03826-y.

    Article  Google Scholar 

  4. A. Goyal, A. Pandey, and H.U.R. Rahman, Sadhana, 47, 217 (2022). https://doi.org/10.1007/s12046-022-01999-9.

    Article  Google Scholar 

Surface modification

  1. S. A. Shabalovskaya, Biomed. Mater. Eng., 12:1, 69 (2002).

  2. S. A. Shabalovskaya, Physicochemical and biological aspects of Nitinol as a biomaterial, Int. Mater.Rev., 46:5, 233 (2001). https://doi.org/10.1179/095066001771048745.

  3. S. Shabalovskaya, Acta Biomater., 4, 447 (2008). https://doi.org/10.1016/j.actbio.2008.01.013.

    Article  Google Scholar 

  4. W. Haider, N. Munroe, V. Tek, C. Pulletikurthi, P.K.S. Gill, and S. Pandya, J. Long-Term Eff. Med. Implants, 19:2, 113 (2009). https://doi.org/10.1615/JLongTermEffMedImplants.v19.i2.30.

  5. N. Choudhary and D. Kaur, Sens. Actuators A: Phys., 242, 162 (2016). https://doi.org/10.1016/j.sna.2016.02.026.

    Article  Google Scholar 

  6. W.-S. Chan, K. Gulati, and O.A. Peters, Bioact. Mater. 22, 91 (2023). https://doi.org/10.1016/j.bioactmat.2022.09.008.

    Article  Google Scholar 

  7. M. S. Safavi, A. Bordbar-Khiabani, F. C. Walsh, M. Mozafari, and J. Khalil-Allafi, Surface modified NiTi smart biomaterials: surface engineering and biological compatibility, Curr. Opin. Biomed. Eng., 25, 100429 (2023). https://doi.org/10.1016/j.cobme.2022.100429.

    Article  Google Scholar 

Standards

  1. ASTM F2063-18 Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants.

  2. ASTM F2633-19 Standard Specification for Wrought Seamless Nickel-Titanium Shape Memory Alloy Tube for Medical Devices and Surgical Implants.

  3. ASTM E1097-12(2017) Standard Guide for Determination of Various Elements by Direct Current Plasma Atomic Emission Spectrometry.

  4. ASTM E1479-16 Standard Practice for Describing and Specifying Inductively Coupled Plasma Atomic Emission Spectrometers.

  5. ASTM E1172-22 Standard Practice for Describing and Specifying a Wavelength Dispersive X-Ray Spectrometer.

  6. ASTM F1710-08(2016) Standard Test Method for Trace Metallic Impurities in Electronic Grade Titanium by High Mass-Resolution Glow Discharge Mass Spectrometer.

  7. ASTM E1019-18 Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques.

  8. ASTM E1941-10(2016) Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis.

  9. ASTM E2465-19 Standard Test Method for Analysis of Ni-Base Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry.

  10. ASTM E1447-22 Standard Test Method for Determination of Hydrogen in Reactive Metals and Reactive Metal Alloys by Inert Gas Fusion with Detection by Thermal Conductivity or Infrared Spectrometry.

  11. ASTM E1409-13(2021) Standard Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion.

  12. ASTM F2005-21 Standard Terminology for Nickel-Titanium Shape Memory Alloys

  13. ASTM F2004-17 Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis

  14. ASTM F2082/F2082M-16 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery.

  15. ASTM E112-13(2021) Standard Test Methods for Determining Average Grain Size.

  16. ASTM E1245-03(2023) Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis.

  17. ASTM E8/E8M-22 Standard Test Methods for Tension Testing of Metallic Materials

  18. D. H. Le, C. Colinet, P. Hicter, and A. Pasturel, J. Condens. Matter Phys., 3:50, 9965 (1991). https://doi.org/10.1088/0953-8984/3/50/002.

  19. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mater. Sci. Eng. A, 243, Iss.1–2, 244 (1998). https://doi.org/10.1016/S0921-5093(97)00808-3.

EB irradiation

  1. G. Thomas, H. Mori, H. Fujita, and R. Sinclair, Scr. Metall., 16:5, 589 (1982). https://doi.org/10.1016/0036-9748(82)90276-9.

  2. Y. Matsukawa and S. Ohnuki, Electron irradiation effect on phase transformation in Ti-Ni shape memory alloy, J. Nucl. Mater., 239, 261 (1996). https://doi.org/10.1016/S0022-3115(96)00428-X.

    Article  ADS  Google Scholar 

  3. A. Okada, K. Hamada, T. Matsumoto, I. Ishida, and Y. Abe, J. Nucl. Mater., 271, 189 (1999).. https://doi.org/10.1016/S0022-3115(98)00705-3.

    Article  ADS  Google Scholar 

  4. X. T. Zu, L. B. Lin, Z. G. Wang, S. Zhu, L. P. You, L. M. Wang, and Y. Huo, J. Alloys Compd., 351, 87 (2003). https://doi.org/10.1016/S0925-8388(02)01080-0.

    Article  Google Scholar 

  5. Z. G. Wang, X. T. Zu, Y. Huo, S. Zhu, X. W. Wei, and L. M. Wang, Nucl. Instrum. Methods Phys. Res. B, 215, 436 (2004). https://doi.org/10.1016/j.nimb.2003.09.012.

    Article  ADS  Google Scholar 

  6. X. T. Zu, F. R. Wan, S. Zhu, and L. M. Wang, Physica B, 351, 59 (2004). https://doi.org/10.1016/j.physb.2004.05.011.

    Article  ADS  Google Scholar 

  7. Y. Zhao, R. Ning, Z. Cao, H. Wang, and W. Cai, Crys. Res. Technol., 55:8, 2000035 (2020). https://doi.org/10.1002/crat.202000035.

  8. Z. G. Wang, X. T. Zu, Y. Q. Fu, S. Zhu, and L. M. Wang, Nucl. Instrum. Methods Phys. Res. B, 227, 337 (2005). https://doi.org/10.1016/j.nimb.2004.09.001.

    Article  ADS  Google Scholar 

  9. X. T. Zu, L. M. Wang, Y. Huo, L. B. Lin, Z. G. Wang, T. C. Lu, L. J. Liu, and X. D. Feng, Appl. Phys. Lett., 80:1, 31 (2002). https://doi.org/10.1063/1.1427747.

  10. X. T. Zu, C. F. Zhang, S. Zhu, Y. Huo, Z. G. Wang, and L. M. Wang, Mater. Lett., 57, 2099 (2003). https://doi.org/10.1016/S0167-577X(02)01145-X.

    Article  Google Scholar 

  11. H. Q. Mo, X. T. Zu, and Y. Huo, Thermochim. Acta, 428, 41 (2005). https://doi.org/10.1016/j.tca.2004.09.022.

    Article  Google Scholar 

  12. T. Nagase, A. Sasaki, H. Y. Yasuda, T. Terai, T. Fukuda, and T. Kakeshita, Acta Mater., 104, 201 (2016). https://doi.org/10.1016/j.actamat.2015.11.031.

    Article  ADS  Google Scholar 

  13. D. Yang, H. C. Jiang, M. J. Zhao, and L. J. Rong, Mater. Des., 57, 21 (2014). https://doi.org/10.1016/j.matdes.2013.12.039.

    Article  Google Scholar 

  14. D. Yang, H. C. Jiang, M. J. Zhao, and L. J. Rong, Mater. Res. Innov., 18:4, 588 (2014). https://doi.org/10.1179/1432891714Z.000000000751.

  15. I. Balz, U. Reisgen, J. Schoft, and C. Otten, CDBME, 2:1, 15 (2016). https://doi.org/10.1515/cdbme-2016-0007.

  16. G. Chen, J. Liu, Z. Dong, Y. Li, Y. Zhao, B. Zhang, and J. Cao, J. Adv.Res., 33, 99 (2021). https://doi.org/10.1016/jjare.2021.02.007.

    Article  Google Scholar 

  17. J. Liu, G. Chen, H. Cao, Q. Yin, S. Yu, B. Zhang, J. Cao, and Y. Huang, Vacuum, 198, 110870 (2022). https://doi.org/10.1016/j.vacuum.2022.110870.

    Article  ADS  Google Scholar 

  18. G. Chen, Y. Ma, X. Teng, J. Liu, B. Zhang, J. Cao, and Y. Huang, Appl. Mater. Today, 31, 101749 (2023). https://doi.org/10.1016/j.apmt.2023.101749.

    Article  Google Scholar 

  19. B. Li, L. Wang, B. Wang, D. Li, J. P. Oliveira, R. Cui, J. Yu, L. Luo, R. Chen, Y. Su, J. Guo, and H. Fu, Mater. Sci. Eng. A, 843, 143135 (2022). https://doi.org/10.1016/j.msea.2022.143135.

    Article  Google Scholar 

  20. B. Li, L. Wang, B. Wang, D. Li, J. P. Oliveira, R. Cui, J. Yu, L. Luo, R. Chen, Y. Su, J. Guo, and H. Fu, Mater. Des., 220, 110886 (2022). https://doi.org/10.1016/j.matdes.2022.110886.

    Article  Google Scholar 

  21. B. Li, B. Wang, L. Wang, J. P. Oliveira, R. Cui, Y. Wang, G. Zhu, J. Yu, and Y. Su, Mater. Sci. Eng.A, 871, 144897 (2023). https://doi.org/10.1016/j.msea.2023.144897.

  22. ASTM F86-21 Standard Practice for Surface Preparation and Marking of Metallic Surgical Implants.

  23. ASTM F2129-19a Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices.

  24. ASTM F746-04(2021) Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials.

Laser surface remelting

  1. F. Villermaux, M. Tabrizian, L. H. Yahia, M. Meunier, and D. L. Piron, Appl. Surf. Sci., 109–110, 62 (1997). https://doi.org/10.1016/S0169-4332(96)00619-8.

    Article  ADS  Google Scholar 

  2. H. C. Man, Z. D. Cui, and T. M. Yue, Scripta Mater., 45, 1447 (2001). https://doi.org/10.1016/S1359-6462(01)01182-4.

    Article  Google Scholar 

  3. Z. D. Cui, H. C. Man, F. T. Cheng, and T. M. Yue, Surf. Coat. Technol., 162, 147 (2003). https://doi.org/10.1016/S0257-8972(02)00399-7.

    Article  Google Scholar 

  4. Z. D. Cui, H. C. Man, and X. J. Yang, Surf. Coat. Technol., 192, 347 (2005). https://doi.org/10.1016/j.surfcoat.2004.06.033.

    Article  Google Scholar 

  5. M. I. Khan and Y. Zhou, Mater. Sci. Eng. A, 527, 6235 (2010). https://doi.org/10.1016/j.msea.2010.06.025.

    Article  Google Scholar 

  6. A. Pequegnat, A. Michael, J. Wang, K. Lian, Y. Zhou, and M. I. Khan, Mater. Sci. Eng. C, 50, 367 (2015). https://doi.org/10.1016/j.msec.2015.01.085.

    Article  Google Scholar 

  7. A. Michael, A. Pequegnat, J. Wang, Y. N. Zhou, and M. I. Khan, Surf. Coat. Technol., 324, 478 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.092.

    Article  Google Scholar 

  8. B. Panton, A. Michael, Y. N. Zhou, and M. I. Khan, Int. J. Fatigue, 118, 307 (2019). https://doi.org/10.1016/j.ijfatigue.2017.11.012.

    Article  Google Scholar 

  9. K. Nozaki, T. Shinonaga, N. Ebe, N. Horiuchi, M. Nakamura, Y. Tsutsumi, T. Hanawa, M. Tsukamoto, K. Yamashita, and A. Nagai, Mater. Sci. Eng. C, 57, 1 (2015). https://doi.org/10.1016/j.msec.2015.07.028.

    Article  Google Scholar 

  10. D. G. Waugh, J. Lawrence, C. W. Chan, I. Hussain, and H. C. Man, In: Laser Surface Engineering. Processes and Applications, 653–676, Elsevier (2015). https://doi.org/10.1016/B978-1-78242-074-3.00027-1.

  11. J. J. Marattukalam, A. K. Singh, S. Datta, M. Das, V. K. Balla, S. Bontha, and S. K. Kalpathy, Mater. Sci. Eng. C, 57, 309 (2015). https://doi.org/10.1016/j.msec.2015.07.067.

    Article  Google Scholar 

  12. J. P. Oliveira, A. J. Cavaleiro, N. Schell, A. Stark, R. M. Miranda, J. L. Ocana, and F. M. Braz Fernandes, Scripta Mater., 152, 122 (2018). https://doi.org/10.1016/j.scriptamdt.2018.04.024.

  13. R. Chakraborty, S. Datta, M. S. Raza, and P. Saha, Appl. Surf. Sci., 469, 753 (2019). https://doi.org/10.1016/j.apsusc.2018.11.045.

    Article  ADS  Google Scholar 

  14. D. Dias, O. Santos, W. Alves, M. Lima, M. Silva, Metals, 9, 1268 (2019). https://doi.org/10.3390/met9121268.

    Article  Google Scholar 

  15. W. Xie, J. Quinn, J. Zhang, L. Carson, and C.-W. Chan, Surf. Coat. Technol., 421, 127403 (2021). https://doi.org/10.1016/j.surfcoat.2021.127403.

    Article  Google Scholar 

  16. E. M. S. Salih and B. H. Al Khaqani, Int. J. Heat Technol., 39:1, 213 (2021). https://doi.org/10.18280/iiht.390123.

  17. S. V. Chernyshikhin, D. V. Panov, T. V. Tuan, D. Y. Ozherelkov, V. A. Sheremetyev, and I. V. Shishkovsky, Met. Mat. Int., 10 (2023). https://doi.org/10.1007/s12540-023-01432-8.

  18. R. Wonneberger, W. Wisniewski, S. Lippmann, F. A. Müller, S. Gräf, and A. Undisz, Surf. Interfaces, 38, 102827 (2023). https://doi.org/10.1016/j.surfin.2023.102827.

    Article  Google Scholar 

  19. A. R. Abbas, K. A. Hebeatir, and K. K. Resan, IJNeaM, 11:4, 481 (2018).

  20. A. R. Abbas, K. A. Hubeatir, and K. K. Resan, IOP Conf. Ser. Mater. Sci. Eng., 1094, 012135 (2021). https://doi.org/10.1088/1757-899X/1094/1/012135.

    Article  Google Scholar 

Laser surface annealing

  1. X. Wang, Y. Bellouard, and J. J. Vlassak, Acta Mater., 53 4955 (2005). https://doi.org/10.1016/j.actamat.2005.07.022.

    Article  ADS  Google Scholar 

  2. Q. Meng, Y. Liu, H. Yang, B. S. Shariat, and T.-H. Nam, Acta Mater., 60, 1658 (2012). https://doi.org/10.1016/j.actamat.2011.11.052.

    Article  ADS  Google Scholar 

  3. J. Chen, L. Xing, G. Fang, L. Lei, and W. Liu, Acta Mater., 208, 116741 (2021). https://doi.org/10.1016/j.actamat.2021.116741.

    Article  Google Scholar 

  4. S. Shiva, I. A. Palani, C. P. Paul, and B. Singh, in: Application of Lasers in Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering (Eds. U. Dixit, S. Joshi, and J. Davim), Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0556-6_1.

Laser surface nitriding

  1. H. C. Man, Z. D. Cui, and T. M. Yue, in: Proc. ICALEO, 1669 (2001). https://doi.org/10.2351/1.5059843.

  2. H. C. Man, Z. D. Cui, and T. M. Yue, J. Laser Appl., 14:4, 242 (2002). https://doi.org/10.2351/1.1514236.

  3. Z. D. Cui, H. C. Man, and X. J. Yang, Appl. Surf. Sci., 208–209, 388 (2003). https://doi.org/10.1016/S0169-4332(02)01414-9.

    Article  ADS  Google Scholar 

  4. H. C. Man and N. Q. Zhao, Surf. Coat. Technol., 200, 5598 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.079.

    Article  Google Scholar 

  5. H. C. Man and N. Q. Zhao, Appl. Surf. Sci., 253, 1595 (2006). https://doi.org/10.1016/j.apsusc.2006.02.057.

    Article  ADS  Google Scholar 

  6. H. C. Man, S. Zhang, F. T. Cheng, and X. Guo, Surf. Coat. Technol., 200, 4961 (2006). https://doi.org/10.1016/j.surfcoat.2005.05.017.

    Article  Google Scholar 

  7. N. Q. Zhao, H. C. Man, Z. D. Cui, and X. J. Yang, Surf. Coat. Technol., 200,4879 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.043.

    Article  Google Scholar 

  8. C. H. Ng, O. K. Chan, and H. C. Man, J. Mater. Sci. Technol., 32:5, 459 (2016). https://doi.org/10.1016/j.jmst.2016.01.012.

  9. C. H. Ng, C. W. Chan, H. C. Man, D. G. Waugh, and J. Lawrence, Surf. Coat. Technol., 309, 1015 (2017). https://doi.org/10.1016/j.surfcoat.2016.10.042.

    Article  Google Scholar 

  10. H. Wang, R. Nett, E. L. Gurevich, and A. Ostendorf, Appl. Sci., 11, 515 (2021). https://doi.org/10.3390/app11020515.

    Article  Google Scholar 

  11. C.-H. Ng, N. Rao, W.-C. Law, G. Xu, T.-L. Cheung, F. T. Cheng, X. Wang, and H.-C. Man, Surf. Coat. Technol., 309, 59 (2017). https://doi.org/10.1016/j.surfcoat.2016.11.008.

    Article  Google Scholar 

Shock Peening

  1. C. Ye, S. Suslov, X. Fei, and G. J. Cheng, Acta Mater., 59, 7219 (2011). https://doi.org/10.1016/j.actamat.2011.07.070.

    Article  ADS  Google Scholar 

  2. X. Fei, D.S. Grummon, C. Ye, G. J. Cheng, and Y.-T. Cheng, J. Mater. Sci., 47, 2088 (2012). https://doi.org/10.1007/s10853-011-6007-5.

    Article  ADS  Google Scholar 

  3. X. Wang, W. Xia, X. Wu, Y. Wei, and C. Huang, Mater. Sci. Eng. A, 578, 1 (2013). https://doi.org/10.1016/j.msea.2013.04.058.

    Article  Google Scholar 

  4. X. Wang, W. Xia, X. Wu, Y. Wei, and C. Huang, Mech. Mater., 114, 69 (2017). https://doi.org/10.1016/j.mechmat.2017.06.009.

    Article  Google Scholar 

  5. S. Ilhom, D. Seyitliyev, K. Kholikov, Z. Thomas, A. O. Er, P. Li, H. E. Karaca, and O. San, SMJ, 4, 224 (2018). https://doi.org/10.1007/s40830-018-0146-3.

    Article  Google Scholar 

  6. K. Yan, P. Wei, F. Ren, W. He, and Q. Sun, SMJ, 5, 436 (2019). https://doi.org/10.1007/s40830-019-00256-z.

    Article  Google Scholar 

  7. F. Xiong, H. Yang, K. Liu, J. Man, and H. Chen, Opt. Laser Technol., 120, 105762 (2019). https://doi.org/10.1016/j.optlastec.2019.105762.

    Article  Google Scholar 

  8. R. Zhang, S. Mankoci, N. Walters, H. Gao, H. Zhang, X. Hou, H. Qin, Z. Ren, X. Zhou, G. L. Doll, A. Martini, N. Sahai, Y. Dong, and C. Ye, J. Biomed. Mater.Res. B: Appl. Biomater., 107:6, 1854 (2019). https://doi.org/10.1002/jbm.b.34278.

  9. K. Yan, P. Wei, K. Chu, H. Wang, W. He, F. Ren, Q. Sun, Fatigue-resistant heterogeneous gradient nanocrystalline NiTi shape memory alloy fabricated by pre-strain laser shock peening, Shape Memory and Superelasticity 8 (2022) 107–117. https://doi.org/10.1007/s40830-022-00367-0

    Article  ADS  Google Scholar 

  10. H. Wang, F. Pöhl, K. Yan, P. Decker, E. L. Gurevich, and A. Ostendorf, Appl. Surf. Sci., 471, 869 (2019). https://doi.org/10.1016/j.apsusc.2018.12.087.

    Article  ADS  Google Scholar 

  11. H. Wang, E. L. Gurevich, and A. Ostendorf, Procedia CIRP, 94, 910 (2020). https://doi.org/10.1016/j.procir.2020.09.071.

    Article  Google Scholar 

  12. H. Wang, Y. Kalchev, H. Wang, K. Yan, E. L. Gurevich, and A. Ostendorf, Surf. Coat. Technol., 394, 125899 (2020). https://doi.org/10.1016/j.surfcoat.2020.125899.

    Article  Google Scholar 

  13. H. Wang, J. Jürgensen, P. Decker, Z. Hu, K. Yan, E. L. Gurevich, and A. Ostendorf, Appl. Surf. Sci., 501, 144338 (2020). https://doi.org/10.1016/j.apsusc.2019.144338.

    Article  Google Scholar 

  14. H. Wang, S. Keller, Y. Chang, N. Kashaev, K. Yan, E. L. Gurevich, and A. Ostendorf, J. Alloys Compd., 896 163011 (2022). https://doi.org/10.1016/j.jallcom.2021.163011.

    Article  Google Scholar 

  15. L. Ma, W. Li, Y. Yang, Y. Ma, K. Luo, B. Jia, Z. Xu, and Z. Yu, Coatings, 11, 1078 (2021). https://doi.org/10.3390/coatings11091078.

    Article  Google Scholar 

  16. R. D. Tamiridi, R. Goud, P. Subramaniyan, K. Sivaperuman, A. K. Subramaniyan, I. Charit, and S. Gollapudi, Crystals, 12, 1319 (2022). https://doi.org/10.3390/cryst12091319.

    Article  Google Scholar 

Laser alloying

  1. S. Zhang, C.-H. Zhang, H.-C. Man, and C.-S. Liu, TNMSC, 17:2, 228 (2007). https://doi.org/10.1016/S1003-6326(07)60076-4.

  2. H. C. Man, K. L. Ho, and Z. D. Cui, Surf. Coat. Technol., 200, 4612 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.034.

    Article  Google Scholar 

  3. K. W. Ng and H. C. Man, in: Laser Surface Modification of Alloys for Corrosion and Erosion Resistance, 124–151, Woodhead Publishing, Oxford (2012). https://doi.org/10.1533/9780857095831.1.124.

  4. K. W. Ng, H. C. Man, and T. M. Yue, Appl. Surf. Sci., 254, 6725 (2008). https://doi.org/10.1016/j.apsusc.2008.04.076.

    Article  ADS  Google Scholar 

  5. J. Hu, Y. Ren, Q. Huang, H. He, L. Liang, J. Liu, R. Li, and H. Wu, Coatings, 11, 597 (2021). https://doi.org/10.3390/coatings11050597.

    Article  Google Scholar 

  6. Y. Ren, J. Du, B. Liu, Z. B. Jiao, Y. Tian, I. Baker, and H. Wu, Mater. Sci. Eng. A, 848, 143402 (2022). https://doi.org/10.1016/j.msea.2022.143402.

    Article  Google Scholar 

  7. K. W. Ng, H. C. Man, J. Lawrence, and T. M. Yue, Proc. Inst. Mech. Eng., Part B, 223:8, 969 (2009). https://doi.org/10.1243/09544054JEM1291.

  8. K. W. Ng, H. C. Man, and T. M. Yue, Appl. Surf. Sci., 257, 3269 (2011). https://doi.org/10.1016/j.apsusc.2010.10.154.

    Article  ADS  Google Scholar 

  9. X. J. Yan, H. Gugel, S. Huth, and W. Theisen, Mater. Lett., 65, 2934 (2011)–2936. https://doi.org/10.1016/j.matlet.2011.06.040.

  10. R. Chakraborty, M. S. Raza, S. Datta, and P. Saha, Surf. Coat. Technol., 358, 539 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.036.

    Article  Google Scholar 

Laser texturing

  1. S. Li, Z. Cui, W. Zhang, Y. Li, L. Li, and D. Gong, Mater. Lett., 255, 126591 (2019). https://doi.org/10.1016/j.matlet.2019.126591.

    Article  Google Scholar 

  2. Z. Cui, S. Li, J. Zhou, Z. Ma, W. Zhang, Y. Li, and P. Dong, Surf. Coat. Technol., 391, 125730 (2020). https://doi.org/10.1016/j.surfcoat.2020.125730.

    Article  Google Scholar 

  3. Y. Cheng, Q. Yang, Y. Lu, J. Yong, Y. Fang, X. Hou, and F. Chen, Biomater. Sci., 8:23, 6505 (2020). https://doi.org/10.1039/D0BM01369B.

  4. C. Yang, Y. Tong, B. Li, Z. Yang, M. Wang, and Y. Tian, Opt. Laser Technol., 161, 109108 (2023). https://doi.org/10.1016/j.optlastec.2023.109108.

    Article  Google Scholar 

  5. X. Yang, C. Yang, Z. Yang, and D. Zhang, Opt. Laser Technol., 163, 109339 (2023). https://doi.org/10.1016/j.optlastec.2023.109339.

    Article  Google Scholar 

  6. M. Wang, Z. Yang, C. Yang, D. Zhang, Y. Tian, and X. Liu, Appl. Surf. Sci., 527, 146889 (2020). 10.1016Zj.apsusc.2020.146889.

  7. J. Marx, E. L. Gurevich, M. Schuleit, C. Esen, and A. Ostendorf, Appl. Phys. A, 129, 522 (2023). https://doi.org/10.1007/s00339-023-06793-w.

    Article  ADS  Google Scholar 

  8. C. A. Biffi, J. Fiocchi, M. Rancan, S. Gambaro, F. Cirisano, L. Armelao, and A. Tuissi, Metals, 13, 381 (2023). https://doi.org/10.3390/met13020381.

    Article  Google Scholar 

HCPEB processing

  1. K. M. Zhang, D. Z. Yang, J. X. Zou, T. Grosdidier, and C. Dong, Surf. Coat. Technol., 201:6, 3096 (2006). https://doi.org/10.1016/j.surfcoat.2006.06.030.

  2. J. Zou, K. Zhang, C. Dong, Y. Qin, S. Hao, and T. Grosdidier, Appl. Phys. Lett., 89:4, 041913 (2006). https://doi.org/10.1063/1.2234306.

  3. K. M. Zhang, J. X. Zou, T. Grosdidier, N. Gey, S. Weber, D. Z. Yang, and C. Dong, J. Vac. Sci. Technol. A: Vac. Surf. Films, 25:1, 28 (2007). https://doi.org/10.1116/1.2388951.

  4. K. M. Zhang, J. X. Zou, T. Grosdidier, N. Gey, D. Z. Yang, S. Z. Hao, and C. Dong, J. Alloys Compd., 434–435, 682 (2007). https://doi.org/10.1016/j.jallcom.2006.08.278.

    Article  Google Scholar 

  5. X. Zou, T. Grosdidier, M. Zhang, C. Dong, and S. Weber, EPJ Appl. Phys., 43:3, 327 (2008). https://doi.org/10.1051/epjap:2008072.

  6. J. Zou, K. Zhang, T. Grosdidier, and C. Dong, Int. J. Heat Mass Trans., 64, 1172 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.036.

    Article  Google Scholar 

  7. K. M. Zhang and J. X. Zou, J. Nanomater., 2013, 503256 (2013). https://doi.org/10.1155/2013/503256.

    Article  Google Scholar 

  8. L. L. Meisner, A. I. Lotkov, V. P. Sivokha, V. P. Rotshtein, E. G. Barmina, and Y. L. Girjakova, Mater. Sci. Eng. A, 438–440, 558 (2006). https://doi.org/10.1016/j.msea.2006.02.104.

    Article  Google Scholar 

  9. L. L. Meisner, A. I. Lotkov, M. G. Ostapenko, and E. Y. Gudimova, Appl. Surf. Sci., 280, 398 (2013). https://doi.org/10.1016/j.apsusc.2013.04.168.

    Article  ADS  Google Scholar 

  10. L. L. Meisner, M. G. Ostapenko, A. I. Lotkov, E. Y. Gudimova, and A. A. Neiman, Steel Transl., 44:9, 646 (2014). https://doi.org/10.3103/S0967091214090101.

  11. L. L. Meisner, A. A. Neiman, A. I. Lotkov, V. O. Semin, and M. G. Ostapenko, Steel Transl., 44:8, 583 (2014). https://doi.org/10.3103/S0967091214080087.

  12. A. A.Neyman, L. L. Meisner, A. I. Lotkov, N. N. Koval, V. O. Semin, and A. D. Teresov, Appl. Surf. Sci., 327, 321 (2015). https://doi.org/10.1016/j.apsusc.2014.11.173.

    Article  ADS  Google Scholar 

  13. A. A. Neyman, L. L. Meisner, A. I. Lotkov, and V. O. Semin, Russ. Phys. J., 58, 255 (2015). https://doi.org/10.1007/s11182-015-0490-0.

    Article  Google Scholar 

  14. L. L. Meisner, M. G. Ostapenko, A. I. Lotkov, A. A. Neyman, Appl. Surf. Sci., 324, 44 (2015). https://doi.org/10.1016/j.apsusc.2014.10.124.

    Article  ADS  Google Scholar 

  15. L. L. Meisner, M. G. Ostapenko, A. I. Lotkov, and A. A. Neyman, Russ. Phys. J, 58, 670 (2015). https://doi.org/10.1007/s11182-015-0549-y.

    Article  Google Scholar 

  16. L. L. Meisner A. B. , Markov, D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, S. N. Meisner, E. V. Yakovlev, T. M. Poletika, S. L. Girsova, and V. O. Semin, Surf. Coat. Technol., 302, 495 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.036.

  17. L. L. Meisner, V. O. Semin, Y. P. Mironov, S. N. Meisner, and F. A. Dyachenko, Mater. Today Commun., 17, 169 (2018). https://doi.org/10.1016/j.mtcomm.2018.08.018.

    Article  Google Scholar 

  18. S. N. Meisner, I. V. Vlasov, E. V. Yakovlev, S. V. Panin, L. L. Meisner, and F. A. D’yachenko, Mater. Sci. Eng. A, 740–741, 381 (2019). https://doi.org/10.1016/j.msea.2018.10.113.

  19. A. A. Neyman, V.O. Semin, L. L. Meisner, and M. G. Ostapenko, J. Alloys Compd., 803, 721 (2019). https://doi.org/10.1016/j.jallcom.2019.06.322.

    Article  Google Scholar 

  20. S. G. Anikeev, A. V. Shabalina, S. A. Kulinich, N. V. Artyukhova, D. R. Korsakova, E. V. Yakovlev, V. A. Vlasov, O. V. Kokorev, and V. N. Hodorenko, Appl. Sci., 11, 4372 (2021). https://doi.org/10.3390/app11104372.

    Article  Google Scholar 

HCPEB alloying

  1. S. N. Meisner, E. V. Yakovlev, V. O. Semin, L. L. Meisner, V. P. Rotshtein, A. A. Neyman, and F Dyachenko, Appl. Surf. Sci., 437, 217 (2018). https://doi.org/10.1016/j.apsusc.2017.12.107.

    Article  ADS  Google Scholar 

  2. L. L. Meisner, A. B. Markov, V. P. Rotshtein, G. E Ozur., S. N. Meisner, E. V. Yakovlev, V. O. Semin, Y. P. Mironov, T. M. Poletika, S. L. Girsova, and D. A. Shepel, J. Alloys Compd., 730, 376 (2018). https://doi.org/10.1016/j.jallcom.2017.09.238.

  3. V. O. Semin and L. L. Meisner, App. Surf. Sci., 491, 411 (2019). https://doi.org/10.1016/j.apsusc.2019.06.179.

    Article  ADS  Google Scholar 

  4. V. O. Semin, E. Y. Gudimova, A. A. Neyman, F. A. Dyachenko, R. R. Mukhamedova, S. Y. Timoshevskaya, E. V. Nefedtsev, and L. L. Meisner, Materialia, 12, 100814 (2020). https://doi.org/10.1016/j.mtla.2020.100814.

    Article  Google Scholar 

  5. V. O. Semin, E. Y. Gudimova, A. A. Neyman, F. A. Dyachenko, and L. L. Meisner, Mater. Charact., 174, 110967 (2021). https://doi.org/10.1016/j.matchar.2021.110967.

    Article  Google Scholar 

  6. L. L. Meisner, V. P. Rotshtein, V. O. Semin, A. B. Markov, E. V. Yakovlev, S. N. Meisner, D. A. Shepel, A. A. Neiman, E. Y. Gudimova, F. A. Dyachenko, and R. R. Mukhamedova, Mater. Charact., 166, 110455 (2020). https://doi.org/10.1016/j.matchar.2020.110455.

    Article  Google Scholar 

  7. V. O. Semin, L. L. Meisner, A. A. Neiman, and E. V. Yakovlev, J. Surf. Invest., 14:2, 396 (2020). https://doi.org/10.1134/S102745102002014.7.

  8. L. L. Meisner, V. P. Rotshtein, V. O. Semin, S. N. Meisner, A. B. Markov, E. V. Yakovlev, F. A. Dyachenko, A. A. Neiman, and E. Y. Gudimova, Surf. Coat. Technol., 404, 126455 (2020). https://doi.org/10.1016/j.surfcoat.2020.126455.

    Article  Google Scholar 

  9. F. A. D’yachenko, L. L. Meysner, A. R. Shugurov, A. A. Neiman, V. O. Semin, and A. A. Atovullaeva, Zh. Tekh. Fiz., 91, Iss.1, 51 (2021). https://doi.org/10.21883/JTF.2021.01.50272.176-20.

  10. V. P. Rotshtein, V. O. Semin, S. N. Meisner, L. L. Meisner, F. A. Dyachenko, A. A. Neiman, A. B. Markov, and E. V. Yakovlev, Vacuum, 194, 110597 (2021). https://doi.org/10.1016/j.vacuum.2021.110597.

    Article  ADS  Google Scholar 

  11. M. G. Ostapenko, V. O. Semin, F. A. D’yachenko, A. A. Neiman, and L. L. Meisner, Acta Mater., 231, 117893 (2022). https://doi.org/10.1016/j.actamat.2022.117893.

  12. F. A. D’yachenko, V. O. Semin, A. R. Shugurov, M. G. Ostapenko, and L. L. Meisner, Surf. Coat. Technol., 474, 130123 (2023). https://doi.org/10.1016/j.surfcoat.2023.130123.

  13. P. Peyre and R. Fabbro, Opt. Quantum Electron., 27, 1213 (1995). https://doi.org/10.1007/BF00326477.

    Article  Google Scholar 

  14. Guide for the Fusion Welding of Titanium and Titanium Alloys. An American National Standard G2.4/G2.4M, AWS (2007).

  15. D. Woodruff, Surface Alloys and Alloy Surfaces, Elsevier, Oxford (2002).

    Google Scholar 

Pre-transitional structural processes

  1. A. I. Potekaev, et al., Structure and Properties of Intermetallics in Pre-traditional Low-stability States, CRC Press, Boca Raton (2020).

    Google Scholar 

  2. A. M. Glezer, et al., Thermal and Time Stability of Amorphous Alloys, CRC Press, Boca Raton (2017).

    Book  Google Scholar 

  3. A. I. Potekaev, et. al., Low-stability Metal-based Nanostructures, NTL Publ., Tomsk (2018).

    Google Scholar 

  4. A. I. Potekaev, L. I. Trishkina, A. A. Klopotov, et al., Russ. Phys. J., 66, 521 (2023). https://doi.org/10.1007/s11182-023-02970-9.

    Article  Google Scholar 

  5. A. V. Nikonenko, N. A. Popova, A. A.Klopotov, et al., Russ. Phys. J., 66, 279 (2023). https://doi.org/10.1007/s11182-023-02937-w.

  6. L. I. Trishkina, A. A. Klopotov, A. I. Potekaev, et al., Russ. Phys. J., 66, 416 (2023). Russ. Phys. J., 66, 416 (2023). https://doi.org/10.1007/s11182-023-02956-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Slobodyan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slobodyan, M.S., Markov, A.B. Laser and Electron-Beam Surface Processing on NiTi Shape Memory Alloys: A Review. Russ Phys J (2024). https://doi.org/10.1007/s11182-024-03158-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11182-024-03158-5

Keywords

Navigation