Skip to main content
Log in

Influence of Silver Ion Content on Nanoparticle Size Obtained by Cavitation-Diffusion Photochemical Reduction

  • Published:
Russian Physics Journal Aims and scope

Photochemical reduction is used to develop many methods of creating biologically active substances and materials consisting of silver nanoclusters, which makes them relevant for science and technology, including different trends in biotechnology, catalytic systems, label-free quantification, metasurfaces and nanohybrid composites. The paper presents the silver nanoparticle (AgNP) technology based on cavitation-diffusion photochemical reduction in the presence of 10 mg of ligand (polyvinylpyrrolidone) allowing to significantly change the AgNP content depending on the concentration of silver nitrate (AgNO3) in the reaction system, and providing the AgNP domination having a certain size. It is found that at 5 mg of AgNO3 in the reaction system, the size of at least 60% of synthesized nanoparticles, is 26 nm or more, while at 2.5 mg of AgNO3, up to 94.7% of nanoparticles have the size of 15 nm and less, 6 to 10 nm AgNPs being dominated. This meets the need for AgNPs of a certain the size in different fields of science and technology, including medical and pharmaceutical industries, agriculture, and laboratory diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Samal, P. Khandayataray, M. Sravani, and M. K. Murthy, Environ. Sci. Pollut. Res. Int., 31, No. 6, 8400 (2024); DOI: https://doi.org/10.1007/s11356-023-31669-0.

  2. Y. R. Lai, J. T. Lai, S. S. Wang, Y. C. Kuo, and T. H. Lin, Int. J. Biol. Macromol., 213, 1098 (2022); DOI: https://doi.org/10.1016/j.ijbiomac.2022.06.016.

    Article  Google Scholar 

  3. I. S. Petriev, M. G. Baryshev, K. A. Voronin, I. S. Lutsenko, P. D. Pushankina, and G. F. Kopytov, Russ. Phys. J., 63, 457 (2020); DOI: https://doi.org/10.1007/s11182-020-02056-w.

    Article  Google Scholar 

  4. M. Zhilnikova, E. Barmina, G. Shafeev, A. Vasiliev, and I. Pavlov, J. Phys. Chem. Sol., 160, 110356 (2022); DOI: https://doi.org/10.1016/j.jpcs.2021.110356.

    Article  Google Scholar 

  5. E. T. Athira and J. Satija, Analyst, 148, No. 24, 6188 (2023); DOI: https://doi.org/10.1039/d3an01244a.

    Article  Google Scholar 

  6. I. Petriev, P. Pushankina, G. Andreev, S. Ivanin, and S. Dzhimak, Int. J. Mol. Sci., 24, No. 24, 17403 (2023); DOI: https://doi.org/10.3390/ijms242417403.

  7. Y. Kanehira, K. Tapio, G. Wegner, S. Jr. Kogikoski, S. Rüstig, C. Prietzel, K. Busch, and I. Bald, ACS Nano, 17, No. 21, 21227 (2023); DOI: https://doi.org/10.1021/acsnano.3c05464.

  8. M. Lafitte, R. Dwivedi, R. Elancheliyan, F. Lagugné-Labarthet, L. Buisson, I. Ly, P. Barois, A. Baron, O. Mondain-Monval, and V. Ponsinet, Langmuir, 40, No. 5, 2601 (2024); DOI: https://doi.org/10.1021/acs.langmuir.3c02900.

    Article  Google Scholar 

  9. Z. Wu, X. Xing, Y. Sun, Y. Liu, Y. Wang, S. Li, and W. Wang, Materials (Basel), 17, No. 2, 505 (2024); DOI: https://doi.org/10.3390/ma17020505.

    Article  Google Scholar 

  10. N. Z. Chamgordani, S. Asiaei, F. Ghorbani-Bidkorpeh, M. Babaee Foroutan, A. Mahboubi, and H. R. Moghimi, Drug Deliv. Transl. Res., 14, No. 2, 386 (2024); DOI: https://doi.org/10.1007/s13346-023-01406-8.

  11. P. Pushankina, M. Baryshev, and I. Petriev, Nanomaterials, 12, No. 23, 4178 (2022); DOI: https://doi.org/10.3390/nano12234178.

    Article  Google Scholar 

  12. S. M. Pridvorova, M. I. Zhilnikova, E. V. Barmina, and G. A. Shafeev, Phys. Wave Phenom., 29, No. 1, 47 (2021); DOI: https://doi.org/10.3103/S1541308X21010052.

  13. B. Pascu, A. Negrea, M. Ciopec, N. Duteanu, P. Negrea, L. A. Bumm, O. G. mBuriac, N. S. Nemeş, C. Mihalcea, and D. M. Duda-Seiman, Int. J. Mol. Sci., 24, No. 1, 255 (2022); DOI: https://doi.org/10.3390/ijms24010255.

  14. A. Basov, S. Dzhimak, M. Sokolov, V. Malyshko, A. Moiseev, E. Butina, A. Elkina, and M. Baryshev, Nanomaterials, 12, No. 7, 1164 (2022); DOI: https://doi.org/10.3390/nano12071164.

    Article  Google Scholar 

  15. J. Benalcázar, E. D. Lasso, C. M. Ibarra-Barreno, J. A. Arcos Pareja, N. S. Vispo, J. C. Chacón-Torres, and S. Briceño, ACS Omega, 7, No. 50, 46745 (2022); DOI: https://doi.org/10.1021/acsomega.2c05793.

  16. G. F. Kopytov, D. I. Shashkov, A. A. Basov, V. V. Malyshko, M. E. Sokolov, A. P. Storozhuk, A. V. Moiseev, A. M. Barysheva, N. V. Zubova, V. A. Isaev, and A. A. Dorokhova, Russ. Phys. J., 67, 156 (2024); DOI: https://doi.org/10.1007/s11182-024-03102-7.

    Article  Google Scholar 

  17. I. S. Petriev, I. S Lutsenko., P. D. Pushankina, V. Yu. Frolov, Yu. S. Glazkova, T. I. Mal’kov, A. M. Gladkikh, M. A. Otkidach, E. B. Sypalo, P. M. Baryshev, N. A. Shostak, and G. F. Kopytov, Russ. Phys. J., 65, No. 2, 312 (2022); DOI: https://doi.org/10.1007/s11182-022-02637-x.

  18. E. Urzúa, F. Gonzalez-Torres, V. Beltrán, P. Barrias, S. Bonardd, A. M. R Ramírez, and M. Ahumada, Nanoscale Advances, 4, No. 22, 4789 (2022); DOI: https://doi.org/10.1039/d2na00539e.

    Article  Google Scholar 

  19. P. G. F. Pacheco, D. L. Ferreira, R. S. Pereira, and M. G. Vivas, Analyst, 148, No. 20, 5262 (2023); DOI: https://doi.org/10.1039/d3an01319g.

    Article  Google Scholar 

  20. S. S. Dzhimak, M. E. Sokolov, A. A. Basov, S. R. Fedosov, V. V. Malyshko, R. V. Vlasov, O. M. Lyasota, and M. G. Baryshev, Nanotechnol. Russ., 11, 835 (2016); DOI: https://doi.org/10.1134/S1995078016060082.

    Article  Google Scholar 

  21. S. S. Dzhimak, V. V. Malyshko, A. I. Goryachko, M. E. Sokolov, A. V. Moiseev, and A. A. Basov, Nanotechnol. Russ., 14, 48 (2019); DOI: https://doi.org/10.1134/S199507801901004X.

    Article  Google Scholar 

  22. S. S. Dzhimak, V. V. Malyshko, A. I. Goryachko, M. E. Sokolov, A. A. Basov, A. V. Moiseev, D. I. Shashkov, G. F. Kopytov, M. G. Baryshev, and V. A. Isaev, Russ. Phys. J., 62, No. 2, 314 (2019); DOI: https://doi.org/10.1007/S11182-019-01714-Y.

  23. A. A. Basov, S. R. Fedosov, V. V. Malyshko, A. A. Elkina, O. M. Lyasota, and S. S. Dzhimak, J. Wound Care, 30, 312 (2021); DOI: https://doi.org/10.12968/jowc.2021.30.4.312.

    Article  Google Scholar 

  24. A. Gibała, P. Żeliszewska, T. Gosiewski, A. Krawczyk, D. Duraczyńska, J. Szaleniec, M. Szaleniec, and M. Oćwieja, Biomolecules, 11, No. 10,1481 (2021); DOI: https://doi.org/10.3390/biom11101481.

    Article  Google Scholar 

  25. I. M. Bykov, A. A. Basov, V. V. Malyshko, S. S. Dzhimak, S. R. Fedosov, and A. V. Moiseev, Bull. Exp. Biol. Med., 163, No. 2, 268 (2017); DOI: https://doi.org/10.1007/s10517-017-3781-3.

  26. S. Khursheed, J. Dutta, I. Ahmad, M. A. Rather, I. A. Badroo, T. A. Bhat, I. Ahmad, A. Amin, A. Shah, T. Qadri, and H. Habib, Food Chem. X, 20, 101051 (2023); DOI: https://doi.org/10.1016/j.fochx.2023.101051.

    Article  Google Scholar 

  27. S. W. Przemieniecki, K. Ruraż, O. Kosewska, M. Oćwieja, and A. Gorczyca, Sci. Total Environ., 914, 169824 (2024); DOI: https://doi.org/10.1016/j.scitotenv.2023.169824.

    Article  ADS  Google Scholar 

  28. O. E. Eremina, N. R. Yarenkov, G. I. Bikbaeva, O. O. Kapitanova, M. V. Samodelova, T. N. Shekhovtsova, I. E. Kolesnikov, A. V. Syuy, A. V. Arsenin, V. S. Volkov, G. I. Tselikov, S. M. Novikov, A. A. Manshina, and I. A. Veselova, Talanta, 266, No. 1, 124970 (2024); DOI: https://doi.org/10.1016/j.talanta.2023.124970.

    Article  Google Scholar 

  29. D. R. Mota, W. D. S. Martini, and D. S. Pellosi, Environ. Sci. Pollut. Res. Int., 30, No. 20, 57667 (2023); DOI: https://doi.org/10.1007/s11356-023-26580-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Shashkov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashkov, D.I., Kopytov, G.F., Basov, A.A. et al. Influence of Silver Ion Content on Nanoparticle Size Obtained by Cavitation-Diffusion Photochemical Reduction. Russ Phys J 67, 464–470 (2024). https://doi.org/10.1007/s11182-024-03145-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03145-w

Keywords

Navigation