Skip to main content
Log in

A Study of the Influence of the Beam and Field Parameters on the Terahertz Multiwave Cherenkov Generator Efficiency

  • QUANTUM ELECTRONICS
  • Published:
Russian Physics Journal Aims and scope

The interaction of a relativistic electron beam with an energy of 280–1500 keV and electromagnetic resonances in a multiwave Cherenkov generator with a diffraction reflector is studied using a 2.5D hybrid code. The main calculations are performed with a 5 kA tubular beam current injected into an electrodynamic system with a diameter of 40 mm. The frequencies are varied within 358–368 GHz. The parameter regions of stable radiation generation during synchronization of electromagnetic resonances by an electron beam and the power self-modulation mode are found. The total radiation power in the calculations, excluding ohmic losses, reaches 2.32 GW with a generation efficiency of 42%. The radiation power decreases by two orders of magnitude with an increase in the electron energy from 1100 keV to 1150 keV. The optimal beam and electrodynamic system parameters in the electron energy range up to 500 keV are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Booske, R. J. Dobbs, C. D. Joyel, et al., IEEE Trans. Terahertz Sci. and Tech., 1, 54 (2011). DOI: https://doi.org/10.1109/TTHZ.2011.2151610.

    Article  CAS  Google Scholar 

  2. S. Gong, K. Ogura, S. Nomizu, et al., IEEE Trans. Plasma Sci., 43, 3530 (2015). DOI: https://doi.org/10.1109/TPS.2015.2424993.

    Article  CAS  Google Scholar 

  3. N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, et al., Phys. Rev. Lett., 117, 204801 (2016). DOI: https://doi.org/10.1103/PhysRevLett.117.204801

    Article  CAS  PubMed  Google Scholar 

  4. J. Gardelle, P. Modin, H. P. Bluem, et al., IEEE Trans. Terahertz Sci. and Tech., 6, 497 (2016). DOI: https://doi.org/10.1109/TTHZ.2016.2543603.

    Article  CAS  Google Scholar 

  5. G. Wang, J. Wang, P. Zeng, et al., Phys. Plasmas, 23, 023104 (2016). DOI: https://doi.org/10.1063/1.4941098.

    Article  CAS  Google Scholar 

  6. G. Wang, J. Wang, P. Zeng, et al., Phys. Plasmas, 23, 053113 (2016). DOI: https://doi.org/10.1063/1.4951021.

    Article  CAS  Google Scholar 

  7. M. T. San, K. Ogura, K. Yamber, et al., IEEE Trans. Plasma Sci., 45, 30 (2017). DOI: https://doi.org/10.1109/TPS.2016.2633550

    Article  Google Scholar 

  8. S.-H. Min, O. Kwon, M. Sattorov, et al., IEEE Trans. Plasma Sci., 45, 610 (2017). DOI: https://doi.org/10.1109/TPS.2017.2665523.

    Article  CAS  Google Scholar 

  9. N. S. Ginzburg, V. Yu. Zaslavsky, A. M. Malkin, et al., Appl. Phys. Lett., 117, 183505 (2020). DOI: https://doi.org/10.1163/5.0026814.

    Article  CAS  Google Scholar 

  10. Y. Annaka, K. Ogura, K. Rachi, et al., IEEE Trans. Plasma Sci., 49, 33 (2021). DOI: https://doi.org/10.1109/TPS.2020.2998119.

    Article  CAS  Google Scholar 

  11. A. M. Malkin, I. V. Zheleznov, A. S. Sergeev, and N. S. Ginzburg, Phys. Plasmas, 28, 063102 (2021). DOI: https://doi.org/10.1063/5.0047087.

    Article  CAS  Google Scholar 

  12. J. Wang, G. Wang, D. Wang, et al., Sci. Rep., 8, 6978 (2018). DOI: https://doi.org/10.1038/s41598-018-25466-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Hu, R. Song, G. Ma, et al., IEEE Trans. Electron Devices, 65, 2149 (2018). DOI: https://doi.org/10.1109/TED.2018.2805699.

    Article  CAS  Google Scholar 

  14. M. T. San, K. Ogura, K. Kubota, et al., IEEE Trans. Plasma Sci., 46, 530 (2018) DOI: https://doi.org/10.1109/TPS.2018.2796559.

    Article  CAS  Google Scholar 

  15. S. Li, J. Wang and D. Wang, Sci. Rep., 10, 336 (2020) DOI: https://doi.org/10.1038/s41598-019-55525-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. Xiao and K. Chen, IEEE Trans. Electron Devices, 70, 4401 (2023). DOI: https://doi.org/10.1109/TED.2023.3285726

    Article  CAS  Google Scholar 

  17. M. P. Deichuly, V. I. Koshelev, A. A. Petkun, and V. A. Chazov, Izv. Vysshikh Uchebnykh Zaved. Fizika, 66, 92 (2023). DOI: https://doi.org/10.17223/00213411/66/6/11.

    Article  Google Scholar 

  18. M. P. Deichuli, V. I. Koshelev, A. A. Petkun, and V. A. Chazov, J. Commun. Tech. Electron., 68, 1430 (2023). DOI: https://doi.org/10.1134/S1064226923120057.

    Article  Google Scholar 

  19. V. A. Chazov, M. P. Deichuly, V. I. Koshelev, and A. A. Petkun, Russ. Phys. J., 66, 567 (2023). DOI: https://doi.org/10.1007/s11182-023-02976-3.

    Article  Google Scholar 

  20. A. N. Vlasov, A. S. Ilyin, and Y. Carmel, IEEE Trans. Plasma Sci., 26, 605 (1998). DOI: https://doi.org/10.1109/27.700797.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chazov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chazov, V.A., Deichuly, M.P., Koshelev, V.I. et al. A Study of the Influence of the Beam and Field Parameters on the Terahertz Multiwave Cherenkov Generator Efficiency. Russ Phys J 67, 102–110 (2024). https://doi.org/10.1007/s11182-024-03094-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03094-4

Keywords

Navigation