Skip to main content
Log in

A Study of the Plasma Jet Formed by the Glow Discharge in an Air Flow in the Electrode System of a Gliding Arc

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The formation of a plasma jet by a glow discharge in an air flow in the electrode system of a so-called gliding arc is considered at an average discharge current of 100 mA and an air flow rate of 0.1 g/s. The displacement of a negative glow region over the cathode surface is analyzed using a sectioned plane cathode. A method for the plasma jet diagnostics by measuring the charged particle current on a special diagnostic electrode placed inside the jet is proposed. Based on the data obtained, the characteristic features of the current transfer inside the jet are obtained. The charged particle concentration inside the jet is estimated for the proposed current transfer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Winter, R. Brandenburg, and K. D. Weltmann, Plasma Sources Sci. Technol., 24, 064001(2015). http://doi.org/https://doi.org/10.1088/0963-0252/24/6/064001.

    Article  ADS  CAS  Google Scholar 

  2. G. Y. Park, S. J. Park, M. Y. Choi, et al., Plasma Sources Sci. Technol., 21, 043001(2012). http://doi.org/https://doi.org/10.1088/0963-0252/21/4/043001.

    Article  ADS  CAS  Google Scholar 

  3. M. Laroussi, IEEE Trans. Plasma Sci., 43, 703(2015). http://doi.org/https://doi.org/10.1109/TPS.2015.2403307.

    Article  ADS  CAS  Google Scholar 

  4. G. Fridman, A. Gutsol, A.B. Shekhter, et. al., Plasma Processes Polym., 5, 503(2008). https://doi.org/https://doi.org/10.1002/ppap.200700154.

    Article  CAS  Google Scholar 

  5. M. A. Malik, Plasma Chem. Plasma Process., 36, 737(2016). https://doi.org/https://doi.org/10.1007/s11090-016-9698-1.

    Article  CAS  Google Scholar 

  6. A. N. Trushkin, M. E. Grushin, I. V. Kochetov, et al., Plasma Phys. Rep., 39, 167(2013). http://doi.org/https://doi.org/10.1134/S1063780X13020025.

    Article  ADS  CAS  Google Scholar 

  7. Y. Xiong, Q. Zhang, R. Wandell, et al. Chem. Eng. J., 361, 519(2019). https://doi.org/https://doi.org/10.1016/j.cej.2018.12.094.

    Article  CAS  Google Scholar 

  8. S. I. Serbin, A. V. Kozlovskyi, K. S. Burunsus, IEEE Trans. Plasma Sci., 44, 2960(2016). http://doi.org/https://doi.org/10.1109/TPS.2016.2607461.

    Article  ADS  CAS  Google Scholar 

  9. Y. D. Korolev, V. O. Nekhoroshev, O. B. Frants, et al.. Plasma Chem. Plasma Process., 42, 1187(2022). https://doi.org/https://doi.org/10.1007/s11090-022-10262-2.

    Article  CAS  Google Scholar 

  10. S. O. Macheret, M. N. Shneider, R. B. Miles, J. Propul. Power., 36, 3 (2020) https://doi.org/https://doi.org/10.2514/1.B37671.

    Article  Google Scholar 

  11. C. S. Kalra, A.F. Gutsol, and A.A. Fridman, IEEE Trans. Plasma Sci., 33, 32(2005). http://doi:https://doi.org/10.1109/TPS.2004.842321.

  12. V. P. Demkin, S. V. Melnichuk, O. V. Demkin, et al., Phys. Plasmas., 23, 043509(2016). http://doi.org/https://doi.org/10.1063/1.4946882.

    Article  ADS  CAS  Google Scholar 

  13. M. Engelhardt, S. Ries, P. Hermanns, et al., J. Phys. D: Appl. Phys., 50, 375201(2017). http://doi.org/https://doi.org/10.1088/1361-6463/aa802f.

    Article  CAS  Google Scholar 

  14. Y. Akishev, G. Aponin, A. Petryakov, et al., J. Phys. D: Appl. Phys., 51, 274006(2018). http://doi.org/https://doi.org/10.1088/1361-6463/aac5fd.

    Article  CAS  Google Scholar 

  15. K. P. Savkin, D. A. Sorokin, D. V. Beloplotov, M. V. Shandrikov, and A. V. Kazakov, Russ. Phys. J., 49, 821(2023). https://doi.org/https://doi.org/10.1134/S1063780X23600238.

    Article  Google Scholar 

  16. D. V. Beloplotov, A. S. Bugaev, V. I. Gushenets, et al., Russ. Phys. J., 65, 1804(2023). https://doi.org/https://doi.org/10.1007/s11182-023-02834-2.

    Article  CAS  Google Scholar 

  17. Y. S. Akishev. Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 62, 26(2019).

  18. V. Gamaleev, N. Iwata, M. Hiramatsu, et al., Jpn. J. Appl. Phys., 21(2020). https://doi.org/10.35848/1347-4065/ab72c9.

  19. N. V. Landl, V. O. Nekhoroshev, Y. D. Korolev, O. B. Frants, and V. S. Kasyanov, Russ. Phys. J., 66, 7(2023).

    Article  Google Scholar 

  20. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Phys. Plasmas, 24, 10(2017). https://doi.org/https://doi.org/10.1063/1.5003141.

    Article  CAS  Google Scholar 

  21. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Plasma Sources Sci. Technol., 23, 054016 (2014). http://doi.org/https://doi.org/10.1088/0963-0252/23/5/054016.

    Article  ADS  Google Scholar 

  22. Y. D. Korolev, V. O. Nekhoroshev, O. B. Frants, et al., Plasma Chem. Plasma Process., 39, 1519(2019). https://doi.org/https://doi.org/10.1007/s11090-019-10016-7.

    Article  CAS  Google Scholar 

  23. Y. D. Korolev, V. O. Nekhoroshev, O. B. Frants, et al. J. Phys. Commun., 3, 085002(2019). https://doi.org/https://doi.org/10.1088/2399-6528/ab361a

    Article  CAS  Google Scholar 

  24. Y. Akishev, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushkin, J. Phys. D: Appl. Phys., 43, 075202(2010). http://doi.org/https://doi.org/10.1088/0022-3727/43/7/075202.

    Article  ADS  CAS  Google Scholar 

  25. Y. Akishev, M. Grushin, I. Kochetov, V. Karalnik, A. Napartovich, and N. Trushkin, Plasma Sources Sci. Technol., 14, S18(2005). http://doi.org/https://doi.org/10.1088/0963-0252/14/2/S03.

    Article  ADS  Google Scholar 

  26. E. McDaniel and E. Mason, John Wiley and Sons, New York. (1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Nekhoroshev, V.O., Korolev, Y.D. et al. A Study of the Plasma Jet Formed by the Glow Discharge in an Air Flow in the Electrode System of a Gliding Arc. Russ Phys J 67, 78–86 (2024). https://doi.org/10.1007/s11182-024-03091-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03091-7

Keywords

Navigation