Skip to main content
Log in

Effect of Ultrasonic Dispersion on Electrophysical Characteristics of Composites Based on Carbon Nanotubes

  • Published:
Russian Physics Journal Aims and scope

The composite material based on multi-walled carbon nanotubes and a water-dispersed paint has been obtained. Low-frequency spectroscopy showed that ultrasonic dispersion of the multi-walled carbon nanotubes (MWCNTs) in the water-dispersion paint leads to a non-monotonic dependences of the complex dielectric constant and electrical conductivity of the composite on the processing time. This behavior is associated with the deagglomeration of MWCNT bundles, the destruction of the MWCNTs at defect sites, and the appearance of extended conductive structures in the bulk composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Açıkalın, O. Atıcı, A. Sayıntı, et al., Progress in Organic Coatings, 76, 972 (2013); DOI: https://doi.org/10.1016/j.porgcoat.2012.10.008.

    Article  CAS  Google Scholar 

  2. V. I. Suslyaev, O. A. Dotsenko, A. N. Babinovitch, et al., Proc. TUSUR Univ., No. 2, Part 1 (22), 73 (2010).

  3. W. Li and X. Yan, Polymers, 15, 2016 (2023); DOI: https://doi.org/10.3390/polym15092016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. S. Iijima, Lett. Nature, 354, 56 (1991); DOI: https://doi.org/10.1038/354056a0.

    Article  ADS  CAS  Google Scholar 

  5. A. V. Radhamani, H. C. Lau, and S. Ramakrishna, Compos. A: Appl. Sci. Manuf., 114, 170 (2018); DOI: https://doi.org/10.1016/j.compositesa.2018.08.010.

    Article  CAS  Google Scholar 

  6. F. Wang, L. Feng, Y. Huang, et al., AIP Adv., 9, 035241 (2019); DOI: https://doi.org/10.1063/1.5090837.

    Article  ADS  CAS  Google Scholar 

  7. S. Laurenzi, M. Clausi, F. Zaccardi, et al., Acta Astronaut., 159, 429 (2019); DOI: https://doi.org/10.1016/j.actaastro.2019.01.043.

    Article  ADS  CAS  Google Scholar 

  8. E. R. Cholleti and I. Gibson, IOP Conf. Ser. Mater. Sci. Eng., 455, 012038 (2018); DOI: https://doi.org/10.1088/1757-899X/455/1/012038.

    Article  Google Scholar 

  9. S. Y. Kim, B. G. Choi, W. K. Baek, et al., Smart Mater. Struct., 28, 035025 (2019); DOI: https://doi.org/10.1088/1361-665X/aafbd9.

    Article  ADS  CAS  Google Scholar 

  10. D. W. Lee, J. H. Lee, N. K Min, and J.-H. Jin, Sci. Rep., 7, 12005 (2017); DOI: https://doi.org/10.1038/s41598-017-12375-7.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  11. M. I. Hussein, S.S. Jehangir, I.J. Rajmohan, et al., Sci. Rep., 10, 1 (2020); DOI: https://doi.org/10.1038/s41598-020-72928-1.

    Article  CAS  Google Scholar 

  12. H. Zhang, X. Hao, W. Su, et al., Infrared Phys. Technol., 113, 103651 (2021); DOI: https://doi.org/10.1016/j.infrared.2021.103651.

    Article  CAS  Google Scholar 

  13. P. Cao, H. Wang, M. Zhu, et al., Biomimetics, 7, 248 (2022); DOI: https://doi.org/10.3390/biomimetics7040248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. N. V. Dezhkunov and T. G. Leighton, J. Eng. Phys. Thermophys., 77, 53 (2004); DOI: https://doi.org/10.1023/B:JOEP.0000020719.33924.aa.

    Article  Google Scholar 

  15. B. Jozwiak, H. F. Greer, G. Dzido, et al., Ultrason. Sonochem., 77, 105681 (2021); DOI: https://doi.org/10.1016/j.ultsonch.2021.105681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. O. A. Dotsenko, A. O. Kachusova, and K. V. Dorozhkin, J. Nano- Electron. Phys., 8, 03043 (2016); DOI: https://doi.org/10.21272/jnep.8(3).03043.

    Article  CAS  Google Scholar 

  17. E. N. Gribov, A. N. Kuznetsov, V. A. Golovin, et al., Mater. Renew. Sustain. Energy, 8, 7 (2019); DOI: https://doi.org/10.1007/s40243-019-0143-2.

    Article  Google Scholar 

  18. A. S. Chervinskaya, O. A. Dotsenko, E. S. Belomyttseva, and A. O. Kachusova, Izv. Vyssh. Uchebn. Zaved. Fiz., 66, 96 (2023).

    Google Scholar 

  19. V. L. Kuznetsov, K. V. Elumeeva, A. V. Ishchenko, et al., Phys. Status Solidi B, 11-12, 2695, (2010); DOI: https://doi.org/10.1002/pssb.201000211.

    Article  ADS  CAS  Google Scholar 

  20. A. V. Bazhenov, T. N. Fursova, A. N. Turanov, et al., Phys. Solid State, 56, 572 (2014); DOI: https://doi.org/10.1134/S1063783414030032.

    Article  ADS  CAS  Google Scholar 

  21. M. V. Shuba, D. I. Yuko, D. N. Meisak, et al., Vestn. BGU. Ser. 1. Phys., 1, 80 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Chervinskaya.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chervinskaya, A.S., Dotsenko, O.A., Mereshkina, V.S. et al. Effect of Ultrasonic Dispersion on Electrophysical Characteristics of Composites Based on Carbon Nanotubes. Russ Phys J 67, 70–77 (2024). https://doi.org/10.1007/s11182-024-03090-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03090-8

Keywords

Navigation