Skip to main content
Log in

Characterization of the Spatial Atomic Density Distribution in Gas Jets from Three Different Nozzles

  • Published:
Russian Physics Journal Aims and scope

The spatial atomic density distribution in a gas jet can be controlled by nozzle geometry. In the present work, argon gas jets from conical, slit, and cylindrical nozzles with the same inlet nozzle sizes are simulated using commercial fluid software (ANSYS Fluent). The results obtained indicate that the cylindrical nozzle produces a radial distribution with the profile similar to a Gaussian function, while the conical nozzle can produce a uniform radial distribution. For the slit nozzle, the profile along the slit width is similar to that for the cylindrical nozzle, and the profile along the slit length is similar to that for the conical nozzle. Along the gas jet, the density at the center of the gas jet experiences a rapid decrease with increasing distance x from the nozzle inlet. For the cylindrical nozzle, the decrease rate is the highest, and it varies as x–8.3 at a backing gas pressure of 80 bar. After the gas jet flows at about 15 mm from the nozzle outlet, the corresponding maximum densities for all nozzles tend to become approximately equal. Some results are compared with the available experimental data, and it is found that they are in agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Slbulkin and W. H. Gallaher, AIAA J., 1, No. 6, 1452 (1963).

    Article  ADS  Google Scholar 

  2. J. Faure, Y. Glinec, A. Pukhov, et al., Nature, 431, No. 7008, 541 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  3. W. P. Leemans, C. G. R. Geddes, J. Faure, et al., Phys. Rev. Lett., 91, No. 7, 074802 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. C. B. Schroeder, E. Esarey, J. van Tilborg, et al., Phys. Rev. E: Stat. Nonlin. Soft Matter Phys., 69, No. 1, 016501 (2004).

  5. J. Van Tilborg, C. B. Schroeder, C. V. Filip, et al., Phys. Rev. Lett., 96, No. 1, 014801 (2006).

    Article  PubMed  ADS  Google Scholar 

  6. A. McPherson, B. D. Thompson, A. B. Borisov, et al., Nature, 370, No. 6491, 631 (1994).

    Article  ADS  CAS  Google Scholar 

  7. T. Ditmire, J. Zweiback, V. P. Yanovsky, et al., Nature, 398, No. 6727, 489 (1999).

    Article  ADS  CAS  Google Scholar 

  8. H.-Y. Li, M.-D. Huang, M. Kang, et al., Chin. Phys. B, 27, No. 6, 063602 (2018).

    Article  ADS  Google Scholar 

  9. T. Ditmire, J. W. G. Tisch, E. Springate, et al., Nature, 386, No. 6620, 54 (1997).

    Article  ADS  CAS  Google Scholar 

  10. H. Ghaforyan, S. M. Bilankohi, and H. Khalilpour, Braz. J. Phys., 53, No. 5, 131 (2023).

    Article  ADS  CAS  Google Scholar 

  11. Z. Lécz, R. Polanek, A. Andreev, et al., Phys. Rev. Res., 5, No. 2, 023169 (2023).

    Article  Google Scholar 

  12. S.-H. Li, C. Wang, J.-S. Liu, et al., Acta Phys. Sin., 54, No. 2, 636 (2005).

    Article  CAS  Google Scholar 

  13. T. Auguste, M. Bougeard, E. Caprin, et al., Rev. Sci. Instrum., 70, No. 5, 2349 (1999).

    Article  ADS  CAS  Google Scholar 

  14. R. Azambuja, M. Eloy, G. Figueira, et al., J. Phys. D: Appl. Phys., 32, No. 8, L35 (1999).

    Article  ADS  CAS  Google Scholar 

  15. K. C. Gupta, N. Jha, P. Deb, et al., J. Appl. Phys., 118, No. 11, 114308 (2015).

    Article  ADS  Google Scholar 

  16. S. V. Avtaeva, T. S. Yakovleva, V. V. Kalyada, et al., J. Phys. Conf. Ser., 927, No. 1, 012005 (2017).

    Article  Google Scholar 

  17. A. E. Zarvin, A. S. Yaskin, K. A. Dubrovin, et al., Vacuum, 191, 110409 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Z. Chen, M. Li, M. Zhou, et al., J. Fusion Energy, 38, No. 2, 228 (2019).

    Article  CAS  Google Scholar 

  19. D. Liu, J. F. Han, Z. Y. Chen, et al., Rev. Sci. Instrum., 87, No. 12, 123504 (2016).

    Article  PubMed  ADS  CAS  Google Scholar 

  20. R. Rajeev, S. V. Raja, T. Madhu Trivikram, et al., J. Appl. Phys., 114, No. 8, 083112 (2013).

  21. F. Dorchies, F. Blasco, T. Caillaud, et al., Phys. Rev. A, 68, No. 2, 023201 (2003).

    Article  ADS  Google Scholar 

  22. K. Schmid and L. Veisz, Rev. Sci. Instrum., 83, No. 5, 053304 (2012).

    Article  PubMed  ADS  CAS  Google Scholar 

  23. S. Lorenz, G. Grittani, E. Chacon-Golcher, et al., Matter Radiat. Extrem., 4, No. 1, 015401 (2019).

    Article  Google Scholar 

  24. Y. Xu, A. S. Boldarev, K. Dong Eon, et al., Acta Phys. Sin., 64, 013601 (2015).

  25. Z. Xiong, G. Chen, D. Cao, et al., Int. J. Mod. Phys. B, 2450049 (2023); DOI:https://doi.org/10.1142/S0217979224500498.

  26. D. Bogdanyuk, V. Emelyanov, A. Pustovalov, et al., Acta Astronaut., 204, 794 (2023).

    Article  ADS  Google Scholar 

  27. V. Malka, C. Coulaud, J. P. Geindre, et al., Rev. Sci. Instrum., 71, No. 6, 2329 (2000).

    Article  ADS  CAS  Google Scholar 

  28. F. Salehi, A. J. Goers, L. Feder, et al., Rev. Sci. Instrum., 90, No. 10, 103001 (2019).

    Article  ADS  Google Scholar 

  29. Q.-Z. Yu, Y.-T. Li, J. Zhang, et al., Chin. Phys. Lett., 21, No. 5, 874 (2004).

    Article  ADS  Google Scholar 

  30. O. F. Hagena, Surf. Sci., 106, No. 1, 101 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglong Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Z., Yang, Y., Xiong, Z. et al. Characterization of the Spatial Atomic Density Distribution in Gas Jets from Three Different Nozzles. Russ Phys J 67, 47–54 (2024). https://doi.org/10.1007/s11182-024-03087-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03087-3

Keywords

Navigation