Skip to main content
Log in

Structure of the Contact Layers of Steel and Their Deterioration in Dry Sliding Against Steel Under High-Density Electric Currents at Different Turn Ratios of a Supply Transformer

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The structural states of the contact layers of C235 steel in dry sliding against C45 steel are studied under a high-density alternating electric current. A sliding electrical contact is made in the secondary winding circuit of a power transformer. The electrical conductivity of this contact decreases with a decrease in the turn ratio. At the same time, the wear resistance and the current density corresponding to the onset of catastrophic wear also decrease. The formation of FeO on the contact surface is shown. The FeO content is observed to increase with the decreasing turn ratio. This is one of the reasons for the decrease in the contact electrical conductivity. Another reason is an increase in the displacement current and a corresponding increase in the excitation of the FeO atomic lattice with a decrease in the turn ratio. The peculiarities of the sliding surface morphology are presented in order to identify the mechanism of the contact layer deterioration and find other reasons for the decrease in the contact electrical conductivity with the decreasing turn ratio. However, the surface layer morphology does not change with the changing turn ratio in sliding under a current density higher than 100 A/cm2. Two sectors appear on the nominal contact area. The boundary between the sectors is quite distinct and is perpendicular to the sliding direction. The sector directed towards the running up contact surface of the counterbody has traces of adhesion, plowing, etc., which generally appear during plastic deformation of the contact surface. The other sector shows the signs of deformation similar to that of a viscous liquid. No traces of adhesion are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Kragelsky, M. N. Dobychin and V. S. Kombalov, Friction and Wear Calculation Methods, Pergamon Press, New York (1982).

    Google Scholar 

  2. M. I Aleutdinova, V. V. Fadin, V. Ye. Rubtsov, and K. A. Aleutdinov, IOP Conf. Ser.: Mater. Sci. Eng., 156, 012027 (2016). https://doi.org/10.1088/1757-899X/156/1/012027.

  3. J.-K. Xiao, Ch. Wang, Sh.-X. Xiao, J. Chen, and Ch. Zhang, Wear, 512–513, 204541 (2023). https://doi.org/10.1016/j.wear.2022.204541.

    Article  CAS  Google Scholar 

  4. A. M. Kovalchenko, P. J. Blau, J. Qu,and S. Danyluk, Wear, 271, 2998 (2011). https://doi.org/10.1016/j.wear.2011.06.009.

    Article  CAS  Google Scholar 

  5. A. Hase and H. Mishina, Tribol. Int., 127, 372 (2018). https://doi.org/10.1016/j.triboint.2018.06.027.

    Article  Google Scholar 

  6. M. Braunovich, V. V. Konchits and N. K. Myshkin, Electrical contacts. Fundamentals, Applications and Technology, CRC Press, N. Y. (2007).

    Google Scholar 

  7. V. V. Fadin, M. I. Aleutdinova, A. I. Potekaev and O. A. Kulikova, Russ. Phys. J., 60, No. 5, 908 (2017). https://doi.org/10.1007/s11182-017-1156-x.

    Article  CAS  Google Scholar 

  8. M. I. Aleutdinova and V. V. Fadin, Russ. Phys. J., 66, No. 6, 605 (2023). https://doi.org/10.1007/s11182-023-02982-53.

  9. M. I. Aleutdinova and V. V. Fadin, Russ. Phys. J., 65, No. 6, 104 (2022). https://doi.org/10.1007/s11182-022-02730-1.

    Article  CAS  Google Scholar 

  10. L. I. Mirkin, Handbook of X-ray Diffraction Analysis of Polycrystals [in Russian], State Publishing House of Physical and Mathematical Literature, Moscow (1961).

    Google Scholar 

  11. M. I. Aleutdinova, Yu. I. Pochivalov, V. V. Fadin, Mater. Lett., 328, 133050 (2022). https://doi.org/10.1016/j.matlet.2022.133050.

    Article  CAS  Google Scholar 

  12. S. Q. Wang, L. Wang, Y. T. Zhao, Y. Sun, and Z. R. Yang, Wear, 306, 311 (2013). https://doi.org/10.1016/j.wear.2012.08.017.

    Article  CAS  Google Scholar 

  13. Bowden, A. Moore, and D. Tabor, J. Appl. Phys., 14 (2), 80(1943), https://doi.org/10.1063/1.1714954.

  14. M. I. Aleutdinova, V. V. Fadin, and K. A. Aleutdinov, J. Phys.: Conf. Ser., 1347, 012041 (2019). https://doi.org/10.1088/1742-6596/1347/1/012041.

    Article  CAS  Google Scholar 

  15. U. Cihak-Bayr, G .Mozdzen, E. Badisch, A. Merstallinger, and H. Winkelmann, Wear, 309, 11 (2014). https://doi.org/10.1016/j.wear.2013.10.008.

    Article  CAS  Google Scholar 

  16. H. Kato, M. Sasase, and N. Suiy, Tribol. Int. 43, 925 (2010), https://doi.org/10.1016/j.triboint.2009.12.040.

    Article  CAS  Google Scholar 

  17. A. A.Burenin, L. V. Kovtanyuk, and G. L. Panchenko, J. Appl. Mech. Tech. Phys., 56(4), 626 (2015). https://doi.org/10.1134/S0021894415040100.

    Article  MathSciNet  CAS  Google Scholar 

  18. A. Inoue and A. Takeuchi, Acta Mater., 59, 2243 (2011), https://doi.org/10.1016/j.actamat.2010.11.027.

    Article  CAS  Google Scholar 

  19. H. X. Li, Z. C. Lu, S .L. Wang, Y. Wu, and Z. P. Lu, Prog. Mater. Sci., 103, 235 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.003.

    Article  CAS  Google Scholar 

  20. F. R. Wang, H. P. Zhang, F. X. Li, and M. Z. Li, J. Alloys Compd., 823, 153101 (2020). https://doi.org/10.1016/j.jallcom.2019.153101.

    Article  CAS  Google Scholar 

  21. J. G. Wang, C. T. Chang, K. K. Song, L. Wang, and Y. Pan, J. Alloys Compd., 770, 386 (2019). https://doi.org/10.1016/j.jallcom.2018.08.090.

    Article  CAS  Google Scholar 

  22. Q. Xia, P. Ren, and H. Meng, J. of Mat. Res. and Techn., 18, 4479 (2022), https://doi.org/10.1016/j.jmrt.2022.04.128.

    Article  CAS  Google Scholar 

  23. L. Fua, W. Han, L. Zhao, and K. Gongetal, Wear, 414–415, 163 (2018). https://doi.org/10.1016/j.wear.2018.08.013.

    Article  CAS  Google Scholar 

  24. Z. Xu, D. Y. Li, and D. L. Chen, Wear, 476, 203650 (2021). https://doi.org/10.1016/j.wear.2021.203650.

    Article  CAS  Google Scholar 

  25. G. Bregliozzi, A. Di Schino, J. M. Kenny, and H. Haefke, Mat. Lett., 57, 4505 (2003). https://doi.org/10.1016/S0167-577X(03)00351-3.

    Article  CAS  Google Scholar 

  26. F. Li, M. Gao, B. Guo. Results Phys., 14, 101827 (2019). https://doi.org/10.1016/j.rinp.2018.11.058.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Aleutdinova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleutdinova, M.I., Fadin, V.V. Structure of the Contact Layers of Steel and Their Deterioration in Dry Sliding Against Steel Under High-Density Electric Currents at Different Turn Ratios of a Supply Transformer. Russ Phys J 67, 1–8 (2024). https://doi.org/10.1007/s11182-024-03081-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03081-9

Keywords

Navigation