Skip to main content
Log in

Anti-Counterfeiting Application and Temperature Sensing Characteristics of SrBi4Ti4O15:Yb3+/Er3+ Phosphor Designed by Solid State Method For Dual-Mode Upconversion Luminescence

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

Rare earth ion-doped upconversion luminescent materials have found extensive utility in anti-counterfeiting applications. However, in practice, single-mode photoluminescence falls short of addressing increasingly intricate demands of contemporary anti-counterfeiting measures. This work presents successfully synthesized dual-mode excited SrBi4Ti4O15 upconversion phosphor doped with Yb3+/Er3+, designed to emit two distinctive colors, green and red under excitation at either 980 or 1550 nm. Introduction of the multi-color emission significantly enhances the security of anti-counterfeiting strategies in a variety of modes. A comprehensive investigation is conducted into potential upconversion mechanisms driven by different excitation sources, examining both 980 and 1550 nm wavelengths. Anti-counterfeiting properties are evaluated for synthesized phosphor by gauging the luminous intensity ratio between red and green light. Research findings unequivocally point to the immense potential of SrBi4Ti4O15 upconversion phosphor doped with Yb3+/Er3+ for robust multimode anti-counterfeiting applications, representing a promising development in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, Adv. Mater., 17, 2119–2123, (2005).

    Article  Google Scholar 

  2. J. Y. Cho, K. Y. Ko, and Y. R. Do, Thin Solid Films, 515, 3373–3379 (2007).

    Article  ADS  Google Scholar 

  3. A. Rapaport, J. Milliez, M. Bass, A. Cassanho and H. Jenssen, J. Disp. Technol., 2, 68–78 (2006).

    Article  ADS  Google Scholar 

  4. G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, Appl. Phys. Lett., 91, 169 (2007).

    Google Scholar 

  5. G. Wang, Q. Peng, and Y. Li, J. Am. Chem. Soc., 131, 14200 (2009).

    Article  Google Scholar 

  6. H. Tan, S. Xie, J. Xu, N. Li, C. Zhang, L. Xu, and J. Zheng, Sci. Adv. Mater. (2017).

  7. Y. Li, T. Liu, and Y. Du, Appl. Phys. Express, 6501, 5 (2013).

    Google Scholar 

  8. H. Li, G. Liu, J. Wang, X. Dong, and W. Yu, Phys. Chem. Chem. Phys., 18, 21518 (2016).

    Article  Google Scholar 

  9. J. Sun, Z. Wei, W. Zhang, and H. Du, Mater. Res. Bull., 47, 786–789 (2012).

    Article  Google Scholar 

  10. X. B. Chen, Opt. Commun., 242, 565–573 (2004).

    Article  ADS  Google Scholar 

  11. S. Ivanova and F. Pellé, J. Opt. Soc. B, 29, 1930–1938 (2009).

    Article  ADS  Google Scholar 

  12. G. S. Maciel, N. Rakov, M. Fokine, I. C. S. Carvalho, and C. B. Pinheiro, Appl. Phys. Lett., 89, 08110901 (2006).

    Article  Google Scholar 

  13. S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, J. Lumin., 128, 914–917 (2008).

    Article  Google Scholar 

  14. K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W.P. Qin, Opt. Lett., 15, 2442–2444 (2010).

    Article  ADS  Google Scholar 

  15. G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, ACS Nano, 5, 4981–4986 (2011).

    Article  Google Scholar 

  16. G. A. Kumar, M. Pokhrel, and D. K. Sardar, Mater. Lett., 68, 395–398 (2012).

    Article  Google Scholar 

  17. R. Martín-Rodríguez, F. T. Rabouw, M. Trevisani, M. Bettinelli, and A. Meijerink, Adv. Opt. Mater., 3, 558–567 (2015).

    Article  Google Scholar 

  18. H. Wang, M. M. Xing, X. X. Luo, X. L. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. B. Ma, and X. L. Duan, J. Alloy. Compd., 587, 344–348 (2014).

    Article  Google Scholar 

  19. H. Wang, T. Jiang, M. M. Xing, Y. Fu, Y. Peng, and X. X. Luo, Ceram. Int., 141, 259–263 (2015).

    Article  Google Scholar 

  20. D.F. Peng, H. Zou, C. N. Xu, X. S. Wang, X. Yao, J. Lin, and T. T. Sun, AIP Adv., 2, 042187 (2012).

    Article  ADS  Google Scholar 

  21. T. Wei, F. M. Yang, Q. S. Jing, C. Z. Zhao, M. C. Wang, M. R. Du, Y. Y. Guo, Q. J. Zhou and Z. P. Li, J. Alloy. Compd., 801, 1–9 (2019).

    Article  Google Scholar 

  22. V. Singh, M. Seshadri, N. Singh, et al., J. Lumin., 176, 347–355 (2016).

    Article  Google Scholar 

  23. Y. Lou, Y. Chen, Z. Gu et al., Ceram. Int., 47, 18866–18874 (2021).

    Article  Google Scholar 

  24. J. Fu, X. Hu, F. Luan, G. Li, and D. Guo, Ceram. Int., 45, 24365–24374 (2019).

    Article  Google Scholar 

  25. D. Shao, L. Lu, H. Sun, X. Zhang, Z. Bai, and X. Mi, J. Lumin., 252, 119377 (2022).

    Article  Google Scholar 

  26. F. Auzel, Chem. Rev., 104, 139 (2004).

    Article  Google Scholar 

  27. S. Buddhudu and F. Bryan, J. Less. Common Met., 147, 213 (1989).

    Article  Google Scholar 

  28. P. Kisluik, W. F. Krupke, J. B. Grube, and J. Chem. Phys., 40, 3606 (1964).

    Article  ADS  Google Scholar 

  29. K. S. Abhishek, K. Y. Kartikey, P. S. Bheeshma, J. Zashmi, C. Sudipta, C. Rubel, K. N. Naveen, K. S. Dhruva, K. Vivekanand, D. Ashutosh, and S. N. Raghumani, ACS Appl. Nano Mater., 1, 850–860 (2021).

    Google Scholar 

  30. H. L. Zhu, L .Liu, H. M. Xiang, F. Z. Dai, X. H. Wang, Z. Ma, Y. B. Liu, and Y. C. Zhou, J. Mater. Sci. Technol., 104, 1–292 (2022).

    Article  ADS  Google Scholar 

  31. M. S. Yang, J. J. Ren, and R. L. Zhang, J. Alloy. Compd., 714, 160–167 (2017).

    Article  Google Scholar 

  32. Y. G. Su, D. Han, C. F. Du, L. M. Peng, L. Lv, and X. J. Wang, J. Nanosci. Nanotechnol., 14, No. 5, 3948–3952 (2014).

    Article  Google Scholar 

  33. D. Sevic, M. S. Rabasovic, J. Krizan, S. Savic-Sevic, B. P. Marinkovic, and M. G. Nikolic, Opt. Quantum Electron., 8, 54–61 (2022).

    Google Scholar 

  34. L. Li, Y. Z. Cao, H. Q. Cui, Y. H. Zhang, G. J. Li, Y. C. Wang, X. P. Li, S. Xu, and B. J. Chen, J. Am. Ceram. Soc., 11, 105–111 (2022).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S.Y., Gao, D., Wang, L. et al. Anti-Counterfeiting Application and Temperature Sensing Characteristics of SrBi4Ti4O15:Yb3+/Er3+ Phosphor Designed by Solid State Method For Dual-Mode Upconversion Luminescence. Russ Phys J 66, 1316–1327 (2024). https://doi.org/10.1007/s11182-023-03078-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03078-w

Keywords

Navigation