Skip to main content
Log in

Features of the Structure Evolution and Phase Transformations During Annealing of the VT22 Titanium Alloy Depending on the Initial State

  • Published:
Russian Physics Journal Aims and scope

Studies have been carried out of the influence of annealing in the temperature range of 723–873 K on the evolution of the structural-phase state and mechanical properties of the VT22 titanium alloy depending on the method of its pretreatment (by all-round pressing and radial-shear rolling (RSR)). It has been shown that annealing of the alloy after all-round pressing leads to the development of phase transformations, formation of new grains with sizes less than 0.1 µm, slight grain growth, decrease in the degree of nonequilibrium grain boundaries, and recrystallization development. The preferential occurrence of certain processes, depending on the annealing temperature, causes a change in the mechanical properties of the alloy compared to the state after all-round pressing. It has been established that the RSR treatment of the VT22 alloy leads to a change in the nature of its structural-phase state evolution during annealing. The increase in the mechanical properties of the alloy in the case is due to the decomposition of the metastable β-phase with the formation of a fine-needle martensitic α phase and solid-solution strengthening. The coarsening of martensitic phase with increasing annealing temperature leads to a decrease in the mechanical properties of the alloy and an increase in the ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Peters, C. Leyens, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinkeim (2003).

    Google Scholar 

  2. A. Ilyin, B. Kolachev, I. Polkin, Titanium Alloys. Composition, Structure, Properties, VILS-MATI, Moscow (2009).

  3. V. Moiseyev, Titanium Alloys. Russian Aircraft and Aerospace Applications, CRC Press, New York (2005).

    Book  Google Scholar 

  4. A. Mouritz, Introduction to Aerospace Materials, Woodhead, Publishing in Materials, 2012.

    Book  Google Scholar 

  5. R. Valiev, A. Zhilyaev, T. Langdon, Bulk nanostructured materials: fundamentals and applications, Wiley, New Jersey (2013).

    Book  Google Scholar 

  6. Yu. Kolobov, R. Valiev, G. Grabovetskaya, A. Zhilyaev, E. Dudarev, K. Ivanov, M. Ivanov, O. Kashin, E. Naydenkin, Grain boundary diffusion and properties of nanostructured materials, Cambridge Int. Sci. Publ. (2007).

    Google Scholar 

  7. M. Meyers, A. Mishra, D. Benson, Prog. Mat. Sci., 51, 427 (2006).

    Article  Google Scholar 

  8. I. Ovid’ko, R. Valiev, Y. Zhu, Prog. Mat. Sci., 94, 462 (2018).

  9. A. Zhilyaev, A. Pshenichnyuk, Superplasticity and grain boundaries in ultrafine-grained materials, Woodhead Publishing Ltd. (2011).

  10. X. Sauvage, G. Wilde, S. Divinski, Z. Horita, R. Valiev, Mater. Sci. Eng., A. 540, 1 (2012).

  11. I. Ratochka, I. Mishin, O. Lykova, E. Naydenkin, Mat. Sci. Eng., A 803, 140511 (2021).

  12. E. Naydenkin, I. Ratochka, I. Mishin, O. Lykova, O. Zabudchenko, Let. Mat., 12, 414 (2022).

    Article  Google Scholar 

  13. H. Matsumoto, K. Yoshida, S-H. Lee, Y. Ono, A. Chiba, Mater. Let., 98, 209 (2013).

    Article  Google Scholar 

  14. M. Ashida, P. Chen, H. Doi, Y. Tsutsumi, T. Hanawa, Z. Horita, Mat. Sci. Eng., A 640, 449 (2015).

  15. S. Zherebtsov, E. Kudryavtsev, G. Salishchev, B. Straumal, S. Semiatin Acta Mat., 121, 152 (2016).

    Article  Google Scholar 

  16. E. Naydenkin, I. Ratochka, I. Mishin, O. Lykova, N. Varlamova, J. Mat. Sci., 52–8, 4164 (2017).

    Article  ADS  Google Scholar 

  17. E. Klassman, V. Astanin, Let. Mat., 10, 10 (2020).

    Article  Google Scholar 

  18. I. Ratochka, E. Naydenkin, I. Mishin, O. Lykova, O. Zabudchenko, J. All. Com., 891, 161981 (2022).

    Article  Google Scholar 

  19. I. Ratochka, E. Naydenkin, O. Lykova, I. Mishin, Rus. Phys. J., 65, 1109 (2022).

    Article  Google Scholar 

  20. U. Zwicker. Titan und titanlegierunger, Springer, Berlin (1974).

    Book  Google Scholar 

  21. I. Ratochka, E. Naydenkin, O. Lykova, I. Mishin, Rus. Phys. J., 62, 1322 (2019).

    Article  Google Scholar 

  22. E. Kozlov, N. Koneva, A. Zhdanov, Phys. Mez., 7, 93 (2004).

    Google Scholar 

  23. E. Kozlov, N. Koneva, N. Popova, Phys. Mez., 12, 93 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Naydenkin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naydenkin, E.V., Ratochka, I.V., Mishin, I.P. et al. Features of the Structure Evolution and Phase Transformations During Annealing of the VT22 Titanium Alloy Depending on the Initial State. Russ Phys J 66, 1299–1309 (2024). https://doi.org/10.1007/s11182-023-03076-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03076-y

Keywords

Navigation