Skip to main content
Log in

Macroscopic and Mesoscopic Inhomogeneities of Electrophysical, Optical, and Photoelectric Characteristics in Chromium Compensated Gallium Arsenide Wafers

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The relationship between the resistivity, the photoconductivity and the short-wave infrared (SWIR) transmission of HR GaAs:Cr wafers and the properties of various-diameter n-GaAs wafers made of LEC and VGF n-GaAs crystals is addressed. It is established that the macroscopic inhomogeneity of resistivity and photoconductivity in HR GaAs:Cr wafers is mostly determined by the uneven macroscopic lateral distribution of the shallow donor impurity in n-GaAs wafers. By means of SWIR transmission imaging, it is shown that the microscopic inhomogeneity in HR GaAs:Cr wafers is primarily determined by the n-GaAs crystal growth technology. The wafers exhibited a (100) orientation. It is demonstrated that a contactless steady state conductivity mapping technique can be applied for express evaluation of electron mobility-lifetime product (μe×τe) in HR GaAs:Cr wafers. It is shown that the macroscopic inhomogeneities of resistivity in the 76 mm and 100-diameter LEC HR GaAs:Cr (LEC – Liquid Encapsulated Czochralski) wafers are determined by the macroscopic inhomogeneity of the charge carrier concentration (CC) profiles in LEC n-GaAs wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Kurinec and S. Walia, Energy Efficient Computing & Electronics: Devices to Systems, CRC Press (2020).

  2. U. Kruchonak, S. A. El-Azm, K. Afanaciev, et al., Nucl. Instr. Meth. Phys. Res. A. 975, 164204 (2020). https://doi.org/10.1016/j.nima.2020.164204.

    Article  Google Scholar 

  3. A. Lozinskaya, I. Chsherbakov, I. Kolesnikova et al., J. Inst. 14 C11026 (2019). https://doi.org/10.1088/1748-0221/14/11/C11026.

    Article  Google Scholar 

  4. R. M. Wheater, L. Jowitt, S. Richards, et al., Nucl. Instr. Meth. Phys. Res. A, 999, 165207 (2021). https://doi.org/10.1016/j.nima.2021.165207.

    Article  Google Scholar 

  5. S. Tsigaridas, C. Ponchut, O. Tolbanov et al., J. Inst. 16, P01032 (2021). https://doi.org/10.1088/1748-0221/16/01/P01032.

    Article  Google Scholar 

  6. C. Ponchut, M. Cotte, A. Lozinskaya, et al., J. Inst. 12, C12023 (2017). https://doi.org/10.1088/1748-0221/12/12/C12023.

    Article  Google Scholar 

  7. D. Greiffenberg, M. Andrä, R. Barten, et al., Sensors, 21, 1550 (2021). https://doi.org/10.3390/s21041550.

    Article  ADS  Google Scholar 

  8. A. Lozinskaya, M .C. Veale, I. Kolesnikova, J. Inst. 16, P02026 (2021). https://doi.org/10.1088/1748-0221/16/02/P02026.

    Article  Google Scholar 

  9. H. Abramowicz, U. Acosta, M. Altarelli, et al., Eur. Phys. J. Spec. Top. 230, 2445 (2021). https://doi.org/10.1140/epjs/s11734-021-00249-z.

    Article  Google Scholar 

  10. M. C. Veale, P. Booker, I. Church et al., Nucl. Instr. Meth. Phys. Res. A, 1025, 166083 (2022). https://doi.org/10.1016/j.nima.2021.166083.

    Article  Google Scholar 

  11. P. Rudolph, Cryst. Res. Technol. 40, 7 (2004). https://doi.org/10.1002/crat.200410302.

    Article  Google Scholar 

  12. G. R. Booker, G. Laczik, and P. Kiddt, Semicond. Sci. Technol., 7, A110 (1992).

    Article  ADS  Google Scholar 

  13. J. Windscheif, M. Baeumler, and U. Kaufmann, Appl. Phys. Lett. 46, 661 (1985). https://doi.org/10.1063/1.95913.

    Article  ADS  Google Scholar 

  14. J. L. Weyher, P. Gall, L. S. Dang, et a., Semicond. Sci. Technol., 7, A45 (1992). https://doi.org/10.1088/0268-1242/7/1A/009.

  15. A. R. Clawson, Materials Science and Engineering: R: Reports, 31, 1–438 (2001). https://doi.org/10.1016/S0927-796X(00)00027-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Vinnik.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinnik, A.E., Zarubin, A.N., Chsherbakov, I.D. et al. Macroscopic and Mesoscopic Inhomogeneities of Electrophysical, Optical, and Photoelectric Characteristics in Chromium Compensated Gallium Arsenide Wafers. Russ Phys J 66, 1212–1219 (2024). https://doi.org/10.1007/s11182-023-03064-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03064-2

Keywords

Navigation