Skip to main content
Log in

Al–Cr/Y–Al–O Layer Coating Oxidation on Ti–Al–Nb Intermetallic Alloy During Heating and Thermal Cycles

  • Published:
Russian Physics Journal Aims and scope

The paper studies the coating consisting of the Al–Cr sublayer and external Y–Al–O ceramic layer obtained by vacuum-arc deposition for the protection of the VTI-4 (Ti49–11Al–40Nb) intermetallic alloy from oxidation at 750°C. The coating degradation mechanism and phase transformations are studied during their heating in a furnace and thermal cyclic tests. Test results show the stability of the double-layer coating in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Appel, J. D. H. Paul, and M. Ehring, Gamma Aluminide Titanium Alloys: Science and Technology. John Wiley & Sons, USA (2011).

    Book  Google Scholar 

  2. Y. Li, J. Dai, and Y. Song, Metals, 11, No. 6, 985 (2021): https://doi.org/10.3390/met11060985.

  3. L. Zhao, et al., Mater. at High Temp., 33, No. 3, 234–240 (2016); https://doi.org/10.1080/09603409.2016.1164523.

  4. R. Swadźba, et al., Corros. Sci., 177, 108985 (2020); https://doi.org/10.1016/j.corsci.2020.108985.

  5. M. Schütze, JOM, 69, 2602–2609 (2017); https://doi.org/10.1007/s11837-017-2595-0.

  6. C. Kenel, et al., Intermetallics, 91, 169–180 (2017); https://doi.org/10.1016/j.intermet.2017.09.004.

  7. C. Kenel, et al., Intermetallics, 90, 63–73 (2017); https://doi.org/10.1016/j.intermet.2017.07.004.

  8. A. D. Prokopets, et al., Mater. Lett., 300, 130165 (2021); https://doi.org/10.1016/j.matlet.2021.130165.

  9. J. Wang, et al., Appl. Surf. Sci., 361, 90–94 (2016); https://doi.org/10.1016/j.apsusc.2015.11.155.

  10. I. Yu. Shubin, et al., Vestnik of Moscow State Technical University named after NE Bauman. Series “Machine Building”, 6, No. 135, 83–105 (2020); https://doi.org/10.18698/0236-3941-2020-6-83-105.

  11. R. Pflumm, S. Friedle, and M. Schütze, Intermetallics, 56, 1–14 (2015); https://doi.org/10.1016/j.intermet.2014.08.002.

  12. N. Laska, R. Braun, and S. Knittel, Surf. Coat. Technol., 349, 347–356 (2018); https://doi.org/10.1016/j.surfcoat.2018.05.067.

  13. Z. Yang, et al., Mater. Res. Express, 5, No. 4, 046408 (2018); https://doi.org/10.1088/2053-1591/aabab1.

  14. C. Gatzen, et al., Coatings, 9, No. 10, 609 (2019); https://doi.org/10.3390/coatings9100609.

  15. L. R. Turcer, et al., J. Eur. Ceram. Soc., 38, No. 11, 3905–3913 (2018); https://doi.org/10.1016/j.jeurceramsoc.2018.03.021.

  16. A. Y. Nazarov, et al., Russ. Phys. J., 65, No. 11, 1908–1916 (2023); https://doi.org/10.1007/s11182-023-02850-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maslov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.A., Nazarov, A.Y., Syrtanov, M.S. et al. Al–Cr/Y–Al–O Layer Coating Oxidation on Ti–Al–Nb Intermetallic Alloy During Heating and Thermal Cycles. Russ Phys J 66, 1206–1211 (2024). https://doi.org/10.1007/s11182-023-03063-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03063-3

Keywords

Navigation