Skip to main content
Log in

Computer Simulation of High-Current Non-Selfsustained Glow Discharge Plasma in Hollow Cathode at Low Pressure

  • Published:
Russian Physics Journal Aims and scope

The paper presents results of computer simulation and experimental measurements of the concentration distribution of high-current non-self-sustained glow discharge plasma generated in the hollow cathode at low pressure. The simulation performed in the drift-diffusion approximation, allows to obtain the main dependences and properties of the glow discharge (current-voltage curves, distribution of the plasma concentration and potential) in a large-sized hollow cathode with two electron beam sources. Calculation results are in agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Lopatin, Yu. Kh. Akhmadeev, N. N. Koval, and P. M. Shchanin, Instruments and Experimental Techniques, 54, 141–146 (2011).

    Article  Google Scholar 

  2. V. V. Denisov, Yu. Kh. Akhmadeev, N. N. Koval, S. S. Kovalsky, I. V. Lopatin, E. V. Ostroverkhov, N. N. Pedin, V.V. Yakovlev, and P. M. Shchanin, Phys. Plasmas, No. 26, 123510 (2019).

  3. A. S. Metel, S. N. Grigoriev, Yu. A. Melnik, and V. V. Panin, Plasma Phys. Rep., 35, No. 12, 1058–1067 (2009).

    Article  ADS  Google Scholar 

  4. V. V. Yakovlev, V. V. Denisov, N. N. Koval, S. S. Kovalsky, E. V. Ostroverkhov, A. O. Egorov, and M. V. Savchuk, Russ. Phys. J., 63, 1757–1765 (2021).

    Article  Google Scholar 

  5. A. S. Metel and S. N. Grigoriev, Glow Discharge with Electrostatic Confinement of Electrons: Physics, Technology, Applications [in Russian], Janus-K, Moscow (2005).

    Google Scholar 

  6. Yu. D. Korolev, O. B. Frants, N. V. Landl, I. A. Shemyakin, and V. G. Geyman, IEEE Trans. Plasma Sci., 41, No. 8, 2087–2096 (2013).

    Article  ADS  Google Scholar 

  7. S. P. Nikulin, Russ. Phys. J., 44, No. 9, 969–976 (2001).

    Article  Google Scholar 

  8. Nguyen Bao Hung, T. V. Koval, Tran My Kim An, in: Proc. Conf. “Information Technologies in Science, Management, Social Sphere and Medicine,” Atlantis Press (2016); DOI: https://doi.org/10.2991/itsmssm-16.2016.93.

  9. E. V. Ostroverkhov, V. V. Denisov, and S. S. Kovalsky, Russ. Phys. J., 65, 1917–1928 (2023).

    Google Scholar 

  10. N. N. Koval, S. V. Grigoryev, V. N. Devyatkov, A. D. Teresov, and P. M. Schanin, IEEE Trans. Plasma Sci., 37, 1890–1896 (2009); DOI: https://doi.org/10.1109/TPS.2009.2023412.

    Article  Google Scholar 

  11. M. S. Vorobyov, P. V. Moskvin, V. I. Shin, T. V., Koval V. N. Devyatkov, S. Yu. Doroshkevich, N. N. Koval, M. S. Torba, and K. T. Ashurova, Tech. Phys., 67, No. 6, 747–752 (2022).

  12. T. V. Koval, I. V. Lopatin, Nguyen Bao Hung, and A. S. Ogorodnikov, Adv. Mat. Res., 1084, 196–199 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Koval.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval, T.V., Denisov, V.V. & Ostroverkhov, E.V. Computer Simulation of High-Current Non-Selfsustained Glow Discharge Plasma in Hollow Cathode at Low Pressure. Russ Phys J 66, 1114–1121 (2023). https://doi.org/10.1007/s11182-023-03051-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03051-7

Keywords

Navigation