Skip to main content
Log in

Synthesis of Titanium-Based Laminates by Reaction Sintering in a Two-Temperature Mode

  • Published:
Russian Physics Journal Aims and scope

The (3Ti-Al-2C)/Ti layered composites are synthesized by the method of reaction sintering. A two-temperature sintering mode, 600°C × 3 hrs + 1250°C × 2 hrs, is selected, and the structure and the phase composition of the sintered composites are studied. According to the XRD analysis, the transition layer of the composite contains a Ti3AlC2 MAX-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Zelepugin, N. V. Pakhnutova, O. A. Shkoda, et al., Metals, 12, 2186 (2022). https://doi.org/10.3390/met12122186

    Article  Google Scholar 

  2. S. V. Pashkov and S. A. Zelepugin, Proc. Inst. Mech. Engin., Part C: J. Mech. Eng. Sci., 236, No. 21, 10681–10689 (2022). https://doi.org/10.1177/0954406220939116

  3. P. A. Radchenko, S. P. Batuev, and A. V. Radchenko, Russ. Phys. J., 66, No. 1, 110 (2023). https://doi.org/10.1007/s11182-023-02911-6.

    Article  Google Scholar 

  4. P. A. Radchenko, A. V. Radchenko, and S. P. Batuev, Russ. Phys. J., 66, No. 2, 180 (2023). https://doi.org/10.1007/s11182-023-02923-2.

    Article  Google Scholar 

  5. S. A. Zelepugin, R. O. Cherepanov, and N. V. Pakhnutova, Materials, 16, 5452 (2023). https://doi.org/10.3390/ma16155452.

    Article  ADS  Google Scholar 

  6. A. S. Buyakov, Russ. Phys. J., 66, No. 1, 58 (2023). https://doi.org/10.1007/s11182-023-02905-4.

    Article  Google Scholar 

  7. N. K. Skripnikova, O. G. Volokitin, M. A. Semenovykh, et al., Russ. Phys. J., 66, No. 2, 213 (2023). https://doi.org/10.1007/s11182-023-02930-3.

    Article  Google Scholar 

  8. S. A. Zelepugin, V. F. Tolkachev, and I. M. Tyryshkin, Vestnik TGU. Matem. Mekhan., 80, 85–96 (2022). https://doi.org/10.17223/19988621/80/8.

  9. E. Wang, F. Kang, H. Wang, et al., J. Alloys Compd., 775, 1307 (2019). https://doi.org/10.1016/j.jallcom.2018.10.277

    Article  Google Scholar 

  10. J. Liu, M. Zhang, F. Jiang, et al., Metals, 9, Iss. 2, 165 (2019). https://doi.org/10.3390/met9020165

    Article  Google Scholar 

  11. X. P. Cui, H. Ding, Y. Y. Zhang, et al., J. Alloys Compd., 775, 1057–1067 (2019). https://doi.org/10.1016/j.jallcom.2018.10.178.

    Article  Google Scholar 

  12. S. A. Zelepugin, V. I. Mali, A. S. Zelepugin, et al., AIP Conf. Proc., 1426, 1101 (2012). https://doi.org/10.1063/1.3686471.

    Article  ADS  Google Scholar 

  13. T. T. Ai, Y. H. Fei, Z. F. Deng, et al., Mat. Express, 8, Iss. 4, 361 (2018). https://doi.org/10.1166/mex.2018.1438.

  14. Q. Wang, D. Zhao, M. Li, et al., Cer. Int., 47, Iss. 4, 5028 (2021). https://doi.org/10.1016/j.ceramint.2020.10.079

  15. P. M. Bazhin, A. S. Konstantinov, A. P. Chizhikov, et al., Cer. Int., 47, Iss. 2, 1513 (2021). https://doi.org/10.1016/j.ceramint.2020.08.292

  16. M. Sokol, V. Natu, S. Kota, et al., Trends in Chemistry, 1, No. 2, 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016.

    Article  Google Scholar 

  17. J. Lyu, E. B. Kashkarov, N. Travitzky, et al., J. Mater. Sci., 56, No. 3, 1980 (2021). https://doi.org/10.1007/s10853-020-05359-y.

    Article  ADS  Google Scholar 

  18. A. Pazniak, P. Bazhin, I. Shchetinin, et al., Cer. Int., 45, 2020 (2019). https://doi.org/10.1016/j.ceramint.2018.10.101.

    Article  Google Scholar 

  19. K. Goc, W. Prendota, L. Chlubny, et al., Cer. Int., 44, 18322–18328 (2018). https://doi.org/10.1016/j.ceramint.2018.07.045.

    Article  Google Scholar 

  20. M. Akhlaghi, S. A. Tayebifard, E. Salahi, et al., Cer. Int., 44, 9671 (2018). https://doi.org/10.1016/j.ceramint.2018.02.195

    Article  Google Scholar 

  21. H. X. Zhang, J. J. Dai, C. X. Sun, et al., Mater. Manufacturing Processes, 33, No. 10, 1037 (2018). https://doi.org/10.1080/10426914.2017.1376078.

    Article  Google Scholar 

  22. D. J. Tallman, L. He, J. Gan, et al., J. Nuclear Mater., 484, 120 (2017). https://doi.org/10.1016/j.jnucmat.2016.11.016.

    Article  ADS  Google Scholar 

  23. L. Fu and W. Xia, Adv. Eng. Mater., 23, 2001191 (2020). https://doi.org/10.1002/adem.202001191.

    Article  Google Scholar 

  24. A. D. Prokopets, P. M. Bazhin, and A. S. Konstantinov, Inorganic Mater., 57, No. 9, 937 (2021). https://doi.org/10.1134/S0020168521090132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zelepugin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepakova, O.K., Shkoda, O.A. & Zelepugin, S.A. Synthesis of Titanium-Based Laminates by Reaction Sintering in a Two-Temperature Mode. Russ Phys J 66, 947–952 (2023). https://doi.org/10.1007/s11182-023-03028-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03028-6

Keywords

Navigation