Skip to main content
Log in

Influence of Ti and Al Content on Self-Propagating High-Temperature Synthesis of Ti-Al-N Systems

  • Published:
Russian Physics Journal Aims and scope

The paper deals with the self-propagating high-temperature synthesis of the Ti–Al–N system consisting of 20 to 90 wt.% Ti. It is found that the initial proportion between titanium and aluminum affects the maximum combustion temperature and the content of synthesized mononitrides. The presence of MAX phases is detected in the Ti–Al–N system. It is demonstrated that the maximum combustion temperature and mononitride formation are associated with the intermediate region between liquidus and solidus in the phase diagram of the Ti–Al system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Ivanovskii, Russian Chemical Reviews, 65, No. 6, 499 (1996); https://doi.org/10.1070/RC1996v065n06ABEH000299.

  2. A. R. Shugurov, E. D. Kuzminov, Y. A. Garanin, et al., Russ. Phys. J., 65, 1762–1767, (2023); https://doi.org/10.1007/s11182-023-02828-0.

  3. M. V. Savchuk, V. V. Denisov, Y. A. Denisova, et al., Russ. Phys. J., 64, 2155–2161 (2022); https://doi.org/10.1007/s11182-022-02568-7.

  4. A. S. Grenadyorov, A. N. Zakharov, V. O. Oskirko, et al., Russ. Phys. J., 65, 1825–1831 (2023); https://doi.org/10.1007/s11182-023-02837-z.

  5. I. M. Low, Y. Sakka, and C. F. Hu, MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments. IGI Global, PA, United States (2013).

  6. D. Y. Kovalev, M. A. Luginina, and A. E. Sytschev, Russ. J. Non-Ferr. Met., 58, 303–307 (2017); https://doi.org/10.3103/S1067821217030087.

  7. S. S. Khludkov, I. A. Prudaev, L. O. Root, et al., Russ. Phys. J., 63, 2013–2024 (2021); https://doi.org/10.1007/s11182-021-02264-y.

  8. Y. Liu, Z. Shi, J. Wang, et al., J. Eur. Ceram. Soc., 31, No. 5, 863–868 (2011); https://doi.org/10.1016/\j.jeurceramsoc.2010.11.018.

  9. S. I. Kolesnikov, A. A. Kondakov, P. A. Miloserdov, et al., Bashkir. Khimich. Zhur., 19, No. 4, 162–165 (2012).

    Google Scholar 

  10. B. S. Braverman, O. K. Lepakova, Y. M. Maksimov, et al., Combustion, Explosion and Shock Waves, 51, 457–461 (2015); https://doi.org/10.1134/S0010508215040085.

  11. B. Holm, R. Ahuja, S. Li, and B. Johansson, J. Appl. Phys., 91, 9874–9877 (2002); https://doi.org/10.1063/1.1476076.

  12. G. V. Samsonov and I. M. Vinnuzkii, Refractory compounds [in Russian], Metallurgiya, Moscow (1976).

  13. Y. S. Han, K. B. Kalmykov, S. F. Dunaev, et al., J. Phase Equilibria Diffus. 25, 427–436 (2004); https://doi.org/10.1007/s11669-004-0134-5.

  14. M. W. Barsoum, T. El-Raghy, and A. Procopio, Metall. Mater. Trans. A, 31, 373–378 (2000); https://doi.org/10.1007/s11661-000-0273-1.

  15. L. Chlubny, J. Lis, and M. M. Buko, in: Developments in Strategic Ceramic Materials: A. Coll. Papers of 39th Int. Conf. on Advanced Ceramics and Composites, January 25–30, Daytona Beach, Florida, Vol. 36, No. 8 (2015); https://doi.org/10.1002/9781119211747.

  16. L. G. Raskolenko and O. A. Shkoda, Int. J. Self-Propag. High-Temp. Synth., 22, 84–87 (2013). https://doi.org/10.3103/S1061386213020076.

    Article  Google Scholar 

  17. N. V. Kruglova, L. G. Raskolenko, and Yu. M. Maksimov, Izv. Vyssh. Uchebn. Zaved., Tsvetnaya Metallurgiya, 2, 56–59 (2002).

  18. O. A. Shkoda, in: Proc. 7th Int. Congr. on Energy Fluxes and Radiation Effects, Tomsk (2020), pp. 1232–1235; https://doi.org/10.1109/EFRE47760.2020.9242011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Shkoda.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkoda, O.A. Influence of Ti and Al Content on Self-Propagating High-Temperature Synthesis of Ti-Al-N Systems. Russ Phys J 66, 934–939 (2023). https://doi.org/10.1007/s11182-023-03026-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03026-8

Keywords

Navigation