Skip to main content
Log in

Methane Heating Based on Magnetocaloric Effect

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

The paper studies methane heating based on the magnetocaloric effect of fullerene C60. The theoretical description is based on the dynamics of a free classical particle. The mathematical model is proposed for the dynamics of the system consisting of fullerene C60 and methane molecules. The interaction between the system elements is described by the Lennard–Jones potential. The average temperature of the system is determined herein. Time dependences are suggested for the system temperatures. The fourth-order Runge-Kutta scheme is used to solve equations of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Caballero and P. J. Perez, Chem. Soc. Rev., 42, No. 23, 8809–8820 (2013).

    Article  Google Scholar 

  2. N. D. Vo, D. H. Oh, S. H. Hong, M. Oh, and C. H. Lee, Appl. Energy, 255, 113809 (2019).

    Article  Google Scholar 

  3. A. D. Nguyen and E. Y. Lee, Trends Biotechnol., 39, No. 4, 381–396 (2021).

    Article  Google Scholar 

  4. T. M. M. Verhallen and F. van Raaij, JOCR, 8, No. 3, 253–257 (1981).

    Google Scholar 

  5. A. Piętak, and S. Radkowski, Journal of KONES, 18, No. 4, 357–386 (2011).

    Google Scholar 

  6. T. E. Lipman and M. A. Delucchi, Clim. Change, 53, No. 4, 477–516 (2002).

    Article  Google Scholar 

  7. J. De Vrieze, S. Gildemyn, R. Vilchez-Vargas, et al., J. Microbiol. Biotechnol., 8, No. 5, 776–786 (2015).

    Article  Google Scholar 

  8. X. Zhou, F. H. Passow, J. Rudek, von Fisher, et al., Elem. Sci. Anth., 7, 19 (2019).

  9. J. He, et al., Appl. Energy, 282, 116112 (2021).

    Article  Google Scholar 

  10. R. C. Callarotti, Sustainability, 3, No. 11, 2105–2114 (2011).

    Article  Google Scholar 

  11. W. Lan, H. Wang, Q. Liu, et al., Energy, 237, 121450 (2021).

    Article  Google Scholar 

  12. Y. Tan, Sю Wang, L. Li, B. Meng, J. Chen, Z. Yang, et al., Chem. Eng. Process., 145, 107662 (2019).

  13. B. Yu, M. Liu, P. W. Egolf, and A. A. Kitanovski, Int. J. Refrig., 33, 1029 (2009).

    Article  Google Scholar 

  14. A. Kitanovski, U. Plaznik, U. Tomc, and A. Poredoš, Int. J. Refrig., 57, 288 (2015).

    Article  Google Scholar 

  15. V. I. Borodin, M. A. Bubenchikov, O. D. Nosyrev, and D. V. Mamontov, Rus. Phys. J., 66, No. 1, 145–149 (2023).

    Article  Google Scholar 

  16. V. I. Borodin, M. A. Bubenchikov, O. D. Nosyrev, and D. V. Mamontov, Rus. Phys. J., 66. No. 1, 150–156 (2023).

    Article  Google Scholar 

  17. A. M. Bubenchikov, et al., Crystals, 12, 1179 (2022).

    Article  Google Scholar 

  18. D. S. Kutsova, E. V. Bogatikov, A. N. Shebanov, D. G. Kulikov, and E. N. Bormontov, Vestn. Voronezh. Gos. Tekh. Univer., 13, No. 5, 108–112 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Borodin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, V.I., Bubenchikov, M.A. & Nosyrev, O.D. Methane Heating Based on Magnetocaloric Effect. Russ Phys J 66, 914–919 (2023). https://doi.org/10.1007/s11182-023-03023-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03023-x

Keywords

Navigation