Skip to main content
Log in

Analysis of the Influence of the Parametric Scalar Factor in the Viscoplastic Equation for Determining Intragranular Shear Rates on the Response in Multilevel Constitutive Models of Metals

  • Published:
Russian Physics Journal Aims and scope

The influence of the parametric scalar factor in the viscoplastic power law (the Hutchinson equation) for intragranular shear rates of edge dislocation slip systems on the material response of multilevel constitutive models is considered. Based on an analysis of existing models, three ways of determining this parameter are found. For each of them, advantages and disadvantages are determined based on the results of a series of computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. Trusov and A. I. Shveykin, Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, and Application Examples [in Russian], Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2019); https://doi.org/10.15372/MULTILEVEL2019TPV.

  2. D. L. McDowell, in: Handbook of Materials Modeling, S. Yip, ed., Springer, The Netherlands (2005), pp. 1151–1169; https://doi.org/10.1007/978-1-4020-3286-8_58.

  3. P. V. Trusov, E. R. Sharifullina, and A. I. Shveykin, Phys. Mesomech., 22, No. 5, 402–419 (2019); https://doi.org/10.1134/S1029959919050072.

    Article  Google Scholar 

  4. P. Trusov, N. Kondratev, and A. Podsedertsev, Crystals, 12, No. 5, 653 (2022); https://doi.org/10.3390/cryst12050653.

  5. U. F. Kocks and H. Mecking, Prog. Mater. Sci., 48, 171–273 (2003); https://doi.org/10.1016/S0079-6425(02) 00003-8.

  6. J. W. Hutchinson, Proc. R. Soc. Lond. A, Math. Phys. Sci., 348, No. 1652, 101–127 (1976); https://doi.org/10.1098/rspa.1976.0027.

  7. M. Tokuda, J. Kratochvil, and N. Ohno, Int. J. Plast., 1, 141–150 (1985); https://doi.org/10.1016/0749-6419(85)90025-7.

  8. K. S. Cheong and E. P. Busso, Acta Mater., 52, No. 19, 5665–5675 (2004); https://doi.org/10.1016/j.actamat.2004.08.044.

  9. J. Li, I. Romero, and J. Segurado, Int. J. Plast., 119, 313–330 (2019); https://doi.org/10.1016/j.ijplas.2019.04.008.

  10. A. I. Shveykin, A. A. Vshivkova, and P. V. Trusov, Phys. Mesomech. (in print).

  11. L. Anand, Comput. Methods Appl. Mech. Eng., 193, 5359–5383 (2004); https://doi.org/10.1016/j.cma.2003.12.068.

  12. L. P. Evers, W. A. M. Brekelmans, and M. G. D. Geers, Int. J. Solids Struct., 41, Nos. 18–19, 5209–5230 (2004); https://doi.org/10.1016/j.ijsolstr.2004.04.021.

    Article  Google Scholar 

  13. M. A. O. Vrielink, J. A. W. van Dommelen, and M. G. D. Geers, Mech. Mater., 145, 103394 (2020); https://doi.org/10.1016/j.mechmat.2020.103394.

  14. E. Cantergiani, G. Falkinger, S. Mitsche, et al, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 53, 2832–2860 (2022); https://doi.org/10.1007/s11661-022-06710-5.

  15. A. Paquin, S. Berbenni, V. Favier, et al, Int. J. Plast., 17, No. 9, 1267–1302 (2001); https://doi.org/10.1016/S0749-6419(00)00047-4.

    Article  Google Scholar 

  16. X. Xiao, D. Song, J. Xue, et al, J. Mech. Phys. Solids, 78, 1–16 (2015); https://doi.org/10.1016/j.jmps.2015.01.011.

  17. I. J. Beyerlein and C. N. Tome, Int. J. Plast., 24, No. 5, 867–895 (2008); https://doi.org/10.1016/j.ijplas.2007.07.017.

    Article  Google Scholar 

  18. M. Knezevic, R. J. McCabe, C. N. Tome, et al, Int. J. Plast., 43, 70–84 (2013); https://doi.org/10.1016/j.ijplas.2012.10.011.

  19. S. Forest and M. B. Rubin, Eur. J. Mech. A: Solids, 55, 278–288 (2016); https://doi.org/10.1016/j.euromechsol.2015.08.012.

  20. A. Rusinek and J. A. Rodríguez-Martínez, Mater. Des., 30, No. 10, 4377–4390 (2009); https://doi.org/10.1016/j.matdes.2009.04.011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vshivkova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vshivkova, A.A., Shveykin, A.I. Analysis of the Influence of the Parametric Scalar Factor in the Viscoplastic Equation for Determining Intragranular Shear Rates on the Response in Multilevel Constitutive Models of Metals. Russ Phys J 66, 835–843 (2023). https://doi.org/10.1007/s11182-023-03012-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03012-0

Keywords

Navigation