Skip to main content
Log in

Formation of Fe–Cr–Al–Zr Surface Alloy on a Zirconium Substrate Using a Low-Energy High-Current Electron Beam

  • Published:
Russian Physics Journal Aims and scope

Patterns on the formation of Fe–Cr–Al–Zr surface alloy on a Zr substrate are presented. The procedure was carried out by alternating magnetron deposition of Fe–Cr–Al films and their subsequent processing with low-energy high-current electron beams. The influence of the energy density on the morphology evolution of both chemical and phase compositions as well as the microstructure of the Fe–Cr–Al–Zr surface alloys were studied. The applied energy parameters led to partial or complete mixing of the deposited films with the substrates. In the first case, the surface alloy possessed both recrystallized layers of the deposited Fe–Cr–Al films and Fe–Cr–Al–Zr transition ones. With complete mixing of the deposited films and the substrates, the nanostructured Fe-Cr-Al-Zr surface alloys were observed. During high-temperature annealing, mutual diffusion rates of the constituent elements between the surface alloy and the substrates were lower by 3–15 times than those in the interface between the initially deposited films and the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang, M. Steinbrück, C. Tang, et al., J. Alloys Compd., 895, 162450 (2022).

    Article  Google Scholar 

  2. M. Slobodyan, Nucl. Eng. Des., 382, 111364 (2021).

    Article  Google Scholar 

  3. M. A. Tunes, R.W. Harrison, S.E. Donnelly, et al., Acta Mater., 169, 237–247 (2019).

    Article  ADS  Google Scholar 

  4. A. Michau, F. Maury, F. Schuster, et al., Coatings, 8, 220 (2018).

    Article  Google Scholar 

  5. O. V. Maksakova, R. F. Webster, R. D. Tilley, et al., J. Alloy. Compd., 831, 154808 (2020).

    Article  Google Scholar 

  6. T. Wei, R. Zhang, H. Yang, et al., Corros. Sci., 158, 108077 (2019).

    Article  Google Scholar 

  7. J.-M. Kim, T-H Ha, J-S Park, et al., Metals, 6 (2), 29 (2016).

    Article  Google Scholar 

  8. H.-G. Kim, I.-H. Kim, Y.-I. Jung, et al., Nucl. Eng. Technol., 46 (4), 521–528 (2014).

    Article  Google Scholar 

  9. M. Ahmad, J. I. Akhter, G. Ali, et al., J. Alloy. Compd., 426 (1–2), 176–179 (2006).

    Article  Google Scholar 

  10. A. Obrosov, A. N. Sutygina, A. Manakhov, et al., Metals, 8, 27 (2018).

    Article  Google Scholar 

  11. N. V. Gavrilov, Nucl. Instrum. Methods Phys. Res., 439, 31–44 (2000).

    Article  ADS  Google Scholar 

  12. J. C. Brachet, E. Rouesne, J. Ribis, et al., Corros. Sci., 167, 108537 (2020).

    Article  Google Scholar 

  13. G. Neumann and C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier (2008).

  14. W. Gong, H. Zhang, C. Wu, et al., Corros. Sci., 77, 391–396 (2013).

    Article  Google Scholar 

  15. M. S. Syrtanov, E. B. Kashkarov, A. V. Abdulmenova, et al., Surf. Coat. Tech., 439, 128459 (2022).

    Article  Google Scholar 

  16. A. B. Markov, A. V. Mikov, G. E. Ozur, et al., Instrum. Exp. Tech., 54, 862 (2011).

    Article  Google Scholar 

  17. A. Markov, E. Yakovlev, D. Shepel, et al., Results Phys., 12, 1915–1924 (2019).

    Article  ADS  Google Scholar 

  18. A. Markov, A. Solovyov, E. Yakovlev, et al., Mater. Chem. Phys., 292, 126821 (2022).

    Article  Google Scholar 

  19. A. Markov, E. Yakovlev, D. Shepel, et al., Russ. Phys. J., 62, 1298–1305 (2019).

    Article  Google Scholar 

  20. W. Xiang and S. Ying, China Nuclear Information Centre, CNIC-01562 (2001).

  21. L. Nicolai and R. de Tendler, J. Nucl. Mater., 82, 439–443 (1979).

    Article  ADS  Google Scholar 

  22. V. P. Rotshtein, V. O. Semin, S. N. Meisner, et al., Vacuum, 194, 110597 (2022).

    Article  Google Scholar 

  23. K. Leelaruedee, Surf. Interfaces, 31, 102036 (2022).

    Article  Google Scholar 

  24. B. C. Maji, S. Ukai, and N. Oono-Hori, Mater. Sci. Eng. A, 807, 140858 (2021).

    Article  Google Scholar 

  25. K. G. Field, M. N. Gussev, Y. Yamamoto, et al., J. Nucl. Mater., 454, 352–358 (2014).

    Article  ADS  Google Scholar 

  26. D. J. Park, H. G. Kim, Y. I. Jung, et al., J. Nucl. Mater., 482, 75–82 (2016).

    Article  ADS  Google Scholar 

  27. Y. Wang, W. Zhou, Q. Wen, et al., Surf. Coat. Technol., 344, 141–148 (2018).

    Article  Google Scholar 

  28. L. Chai, B. Chen, S. Wang, et al., Appl. Surf. Sci., 390, 430–434 (2016).

    Article  ADS  Google Scholar 

  29. S. Yang, J. Cai, P. Lu, et al., Nucl. Instrum. Methods Phys. Res. B, 358, 151–159 (2015).

    Article  ADS  Google Scholar 

  30. B. Samanta, P. Ramakrishna, S. Balakrishnan, et al., Calphad, 78, 102458 (2022).

    Article  Google Scholar 

  31. F. Stein, G. Sauthoff, and M. Palm, J. Phase Equilibr., 23 (6), 480–494 (2002).

    Article  Google Scholar 

  32. R. W. Gilbert, M. Griffiths, and G. J. C. Carpenter, J. Nucl. Mater., 135, 265–268 (1985).

    Article  ADS  Google Scholar 

  33. J. Bowman, P. Wang, G. S. Was, et al., J. Nucl. Mater., 571, 153988 (2022).

    Article  Google Scholar 

  34. S. Kano, H. Yang, K. Murakami, et al., Nucl. Instrum. Methods Phys. Res. B, 531, 1–8 (2022).

    Article  ADS  Google Scholar 

  35. A. B. Markov, E. V. Yakovlev, A. V. Solovyov, et al., Russ. Phys. J., 66 (4), 410–415 (2023).

    Article  Google Scholar 

  36. Yu. B. Kuzma, V. Y. Markiv, Yu. V. Voroshilov, et al., Inorg. Mater., 2, 222–225 (1966).

    Google Scholar 

  37. V. A. Yartys, H. Fjellvag, B. C. Hauback, et al., J. Alloys Compd., 274, 217–221 (1998).

    Article  Google Scholar 

  38. M. V. Nevitt, J. W. Downey, and R. A. Morris, Trans. Metall. Soc. AIME, 218, 1019–1023 (1960).

    Google Scholar 

  39. I. Yu. Zavaliy, M. V. Lototsky, A. B. Riabov, et al., J. Alloys Compd., 219, 38–40 (1995).

    Article  Google Scholar 

  40. B. Niu, Z. Wang, Q. Wang, et al., Prog. Nat. Sci., 32, 114–127, (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Yakovlev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, E.V., Pesterev, E.A., Slobodyan, M.S. et al. Formation of Fe–Cr–Al–Zr Surface Alloy on a Zirconium Substrate Using a Low-Energy High-Current Electron Beam. Russ Phys J 66, 810–822 (2023). https://doi.org/10.1007/s11182-023-03009-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03009-9

Keywords

Navigation