Skip to main content
Log in

Study of the Plasma Jet Formed by the Glow Discharge in an Air Flow at the Positive Polarity of the Potential Electrode of a Low-Current Coaxial Plasmatron

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

Features of the plasma jet formation by the glow discharge in an air flow in the system of electrodes of a low-current coaxial plasmatron are considered at an average discharge current of 100 mA and a mass air flow of 0.1 g/s. The peculiarity of experimental conditions is the positive polarity of the internal (potential) electrode of the plasmatron. Features of the discharge maintenance in the plasmatron are investigated. The technique of plasma jet diagnostics by measuring the gas temperature and the charged particle current on the special diagnostic electrode placed inside the jet is proposed. Based on the data obtained, the characteristic features of current transfer inside the jet have been obtained. The charged particle concentration inside the jet is estimated for the proposed model of current transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Winter, R. Brandenburg, and K. D. Weltmann, Plasma Sources Sci. Technol., 24, 064001 (2015).

    Article  ADS  Google Scholar 

  2. G. Y. Park, S. J. Park, M. Y. Choi, et al., Plasma Sources Sci. Technol., 21, 043001 (2012).

    Article  ADS  Google Scholar 

  3. M. Laroussi, IEEE Trans Plasma Sci., 43, 703 (2015).

    Article  ADS  Google Scholar 

  4. G. Fridman, A. Gutsol, A. B. Shekhter, et al., Plasma Process. Polym., 5, 503 (2008).

    Article  Google Scholar 

  5. M. A. Malik, Plasma Chem. Plasma Process., 36, 737 (2016).

    Article  Google Scholar 

  6. A. N. Trushkin, M. E. Grushin, I. V. Kochetov, et al., Plasma Phys. Rep., 39, 167 (2013).

    Article  ADS  Google Scholar 

  7. Y. Xiong, Q. Zhang, R. Wandell, et al., Chem. Eng. J., 361, 519 (2019).

    Article  Google Scholar 

  8. S. I. Serbin, A. V. Kozlovskyi, and K. S. Burunsus, IEEE Trans. Plasma Sci., 44, 2960 (2016).

    Article  ADS  Google Scholar 

  9. Y. D. Korolev, V. O. Nekhoroshev, O. B. Frants, et al., Plasma Chem. Plasma Process., 42, 1187 (2022).

    Article  Google Scholar 

  10. S. O. Macheret, M. N. Shneider, and R. B. Miles, J. Propuls. Power, 36, 1 (2020).

  11. C. S. Kalra, A. F. Gutsol, and A. A. Fridman, IEEE Trans. Plasma Sci., 33, 32 (2005).

    Article  ADS  Google Scholar 

  12. V. P. Demkin, S. V. Melnichuk, O. V. Demkin, et al., Phys. Plasmas, 23, 043509 (2016).

    Article  ADS  Google Scholar 

  13. M. Engelhardt, S. Ries, P. Hermanns, et al., J. Phys. D: Appl. Phys., 50, 375201 (2017).

    Article  Google Scholar 

  14. Y. Akishev, G. Aponin, A. Petryakov, et al., J. Phys. D: Appl. Phys., 51, 274006 (2018).

    Article  Google Scholar 

  15. D. V. Beloplotov, A. S. Bugayev, V. I. Gushenets, et al., Russ. Phys. J., 65, 11 (2022).

    Google Scholar 

  16. D. V. Beloplotov, A. S. Bugaev, V. I. Gushenets, et al., Russ. Phys. J., 65, 1804 (2023).

    Google Scholar 

  17. Y. S. Akishev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 62, 26 (2019).

  18. Y. D. Korolev, V. O. Nekhoroshev, O. B. Frants, et al., Plasma Chem. Plasma Process., 39, 1519 (2019).

    Article  Google Scholar 

  19. Y. D. Korolev, V. O. Nekhoroshev, O. B. Frants, et al., J. Phys. Commun., 3, 085002 (2019).

    Article  Google Scholar 

  20. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Plasma Sources Sci. Technol., 23, 054016 (2014).

    Article  ADS  Google Scholar 

  21. E. McDaniel and E. Mason, The Mobility and Diffusion of Ions in Gases, John Wiley and Sons, New York (1973).

    Google Scholar 

  22. Y. Akishev, M. Grushin, V. Karalnik, et al., J. Phys. D: Appl. Phys., 43, 075202 (2010).

    Article  ADS  Google Scholar 

  23. Y. Akishev, M. Grushin, I. Kochetov, et al., Plasma Sources Sci. Technol., 14, S18 (2005).

    Article  Google Scholar 

  24. Y. P. Raizer, Gas Discharge Physics, Springer, Berlin; New York (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Nekhoroshev, V.O., Korolev, Y.D. et al. Study of the Plasma Jet Formed by the Glow Discharge in an Air Flow at the Positive Polarity of the Potential Electrode of a Low-Current Coaxial Plasmatron. Russ Phys J 66, 792–799 (2023). https://doi.org/10.1007/s11182-023-03007-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03007-x

Keywords

Navigation