Skip to main content
Log in

To the Nature of Dark Matter

  • ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY
  • Published:
Russian Physics Journal Aims and scope

The nature of dark matter is one of the issues most actively discussed in both cosmology and particle physics. The progress in observational cosmology and determination of many parameters of the standard cosmological model (SCM) is insufficient to shed light on the nature of dark energy, the origin of the particle-antiparticle asymmetry in the Universe, the causes of the inflationary period, the cosmological lithium problem, etc. This paper attempted to gain a new insight into the nature of the dark matter through the idea of G. Gamow (1946) who assumed that a primordial hot universe consisted only of neutrons. The assumption is argued that the dark matter consists of baryons (neutrons) similar to ordinary matter (neutrons and protons). Experiments are proposed to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Turner, Annu. Rev. Nucl. Part. Sci., 72, 1–33 (2022); arXiv:2201.04741v1 [astro-ph.CO].

  2. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys., 2022, 083C01, 22. Big-Bang Cosmology (2022).

  3. A. D. Sakharov, Pis’ma ZhETF, 5, 32 (1967).

    Google Scholar 

  4. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01, 25. Cosmological Parameters (2022).

  5. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01, 27. Dark Matter (2022).

  6. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01, 24. Big Bang Nucleosynthesis (2022).

  7. B. D. Fields, K. A. Olive, T.-H. Yeh, and C. Young, JCAP 03 010 (2020); arXiv:1912.01132v1 [astro-ph.CO].

  8. V. M. Bystritsky, D. N. Dudkin, B. A. Nachaev, et al., JETP Lett., 107 (11), 665 (2018).

    Article  ADS  Google Scholar 

  9. V. A. Varlachev, D. N. Dudkin, B. A. Nechaev, et al., JETP Lett., 113 (4), 231 (2021).

    Article  ADS  Google Scholar 

  10. C. A. Bertulani and T. Kajino, Prog. Part. Nucl. Phys., 89, 56 (2016); https://doi.org/10.1016/j.ppnp.2016.04.001; arXiv:1604.03197v1 [nucl-th].

  11. G. Gamow, Phys. Rev., 70, 572 (1946).

    Article  ADS  Google Scholar 

  12. G. Gamow, Nature, 162, 680 (1948).

    Article  ADS  Google Scholar 

  13. R. A. Alpher, H. Bethe, and G. Gamow, Phys. Rev., 73, 803 (1948).

    Article  ADS  Google Scholar 

  14. C. Hayashi, Prog. Theor. Phys., 5, 2 (1950).

    Article  Google Scholar 

  15. D. Dubbers and B. Märkisch, Ann. Rev. Nucl. Part. Sci., 71, 139 (2021).

    Article  ADS  Google Scholar 

  16. F. M. Marqués and J. Carbonell, Eur. Phys. J. A, 57, 105 (2021); https://doi.org/10.1140/epja/s10050-021-00417-8.

    Article  ADS  Google Scholar 

  17. V. M. Bystritsky, G. N. Dudkin, E. G. Emets, et al., Phys. Part. Nucl. Lett., 14, 560 (2017).

    Article  Google Scholar 

  18. B. D. Fields and K. A. Olive, JCAP, 10, 078 (2022).

    Article  ADS  Google Scholar 

  19. D. Trezzi, M. Anders, M. Aliotta, et al., Astropart. Phys., 89, 57 (2017).

    Article  ADS  Google Scholar 

  20. C. Pitrou, A. Coc, J.-P. Uzan, and E. Vangioni, Phys. Rep., 754, 1 (2018); arXiv:1801.08023v2 [astro-ph.CO].

  21. M. Duer, T. Autmann, R. Gernhäuser, et al., Nature, 606 (7915), 678 (2022); https://doi.org/10.1038/s41586-022-04827-6.

  22. G. N. Dudkin, A. A. Garapatskii, and V. N. Padalko, Nucl. Instrum. Methods Phys. Res. A, 760, 73 (2014).

    Article  ADS  Google Scholar 

  23. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, Interscience, New York (1967).

  24. M. Archidiacono, E. Castorino, D. Redigolo, and E. Salvioni, JCAP, 10, 074 (2022); arXiv:2204.08484v1 [astro-ph.CO].

  25. H. Banks and M. McCullough, Phys. Rev. D, 103, 075018 (2021).

    Article  ADS  Google Scholar 

  26. l. D. Jentschura, Phys. Rev. A, 101, 062503 (2020); https://doi.org/10.1103/PhysRevA.101.062503.

  27. S. Randich and L. Magrini, Front. Astron. Space Sci., 8, 616201 (2021); https://doi.org/10.3389/fspas.2021.616201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Dudkin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudkin, G.N. To the Nature of Dark Matter. Russ Phys J 66, 785–791 (2023). https://doi.org/10.1007/s11182-023-03006-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03006-y

Keywords

Navigation