Skip to main content
Log in

Multi-Spectral X-Ray Detectors for Nondestructive Testing of 3D Printed Polymer Composites

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The paper presents parameters of two multi-spectral X-ray detectors based on high resistivity chromiumcompensated gallium arsenide, which convert X-ray signal directly into electrical signal. Detectors consist of 80×80 and 256×256 pixels on 250 and 55 μm pitches, respectively. Their sensitive layer thickness ranges between 500 and 550 μm. At 3–4 keV photon energy, detectors offer high-quality X-ray images in the X-ray radiation range of 10 to 30 keV. Detectors allow distinguishing average densities between 0.3 and 2.4 g/cm3 for 3D printed polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Egan, M. D. Wilson, M. C. Veale, et al., Nucl. Inst. & Meth. in Phys. Res. B, 324, 25–28 (2014); DOI: https://doi.org/10.1016/j.nimb.2013.11.021.

  2. S. D. M. Jacques, C. K. Egan, M. D. Wilson, et al., Analyst, 138, 755–759 (2013); DOI: https://doi.org/10.1039/C2AN36157D.

  3. L. Abbene, F. Principato, G. Gerardi, et al., J. Synchrotron Radiat., 25, 257–271 (2018); DOI: https://doi.org/10.1107/S1600577517015697.

  4. J. S. Iwanczyk, E. Nygard, O. Meirav, et al., IEEE Trans. Nucl. Sci., 56, 535–542 (2009); DOI: https://doi.org/10.1109/TNS.2009.2013709.

    Article  Google Scholar 

  5. B. Dierickx, Q. Yao, N. Witvrouwen, et al., Sensors, 16, 764 (2016); DOI: https://doi.org/10.3390/s16060764.

    Article  ADS  Google Scholar 

  6. B. K. Cha, J. Y. Kim, Y. J. Kim, et al., J. Instrum., 7, C04020–C04020 (2012); DOI: https://doi.org/10.1088/1748-0221/7/04/C04020.

  7. A. Brambilla, P. Ouvrier-Buffet, G. Gonon, et al., IEEE Trans. Nucl. Sci., 60, 408–415 (2013); DOI: https://doi.org/10.1109/TNS.2012.2226910.

    Article  Google Scholar 

  8. C. Fröjdh, B. Norlin, and E. Fröjdh, J. Instrum., 8, C02010–C02010 (2013); DOI: https://doi.org/10.1088/1748-0221/8/02/C02010.

  9. D. Pennicard and H. Graafsma, J. Instrum., 6, P06007–P06007 (2011); DOI: https://doi.org/10.1088/1748-0221/6/06/P06007.

  10. S. Tsigaridas, C. Ponchut, O. Tolbanov, et al., J. Instrum., 16, P01032–P01032 (2021); DOI: https://doi.org/10.1088/1748-0221/16/01/P01032.

  11. S. Chiriotti, R. Barten, A. Bergamaschi, et al., J. Instrum., 17, P04007 (2022); DOI: https://doi.org/10.1088/1748-0221/17/04/P04007.

    Article  Google Scholar 

  12. M. C. Veale, P. Booker, I. Church, et al., Nucl. Inst. & Meth. in Phys. Res. A, 1025, 166083 (2022); DOI: https://doi.org/10.1016/j.nima.2021.166083.

  13. E. Hamann, T. Koenig, M. Zuber, et al., IEEE Trans. Med. Imaging, 34, 707–715 (2015); DOI: https://doi.org/10.1109/TMI.2014.2317314.

    Article  Google Scholar 

  14. M. C. Veale, S. J. Bell, D. D. Duarte, et al., J. Instrum., 9, C12047–C12047 (2014); DOI: https://doi.org/10.1088/1748-0221/9/12/C12047.

  15. M. C. Veale, S. J. Bell, D. D. Duarte, et al., Nucl. Inst. and Meth. in Phys. Res. A, 752, 6–14 (2014); DOI: https://doi.org/10.1016/j.nima.2014.03.033.

  16. B. Norlin, C. Frojdh, E. Frojdh, et al., IEEE Nucl. Sci. Symp. Conf. Rec., 2009; DOI: https://doi.org/10.1109/nssmic.2009.5402223.

    Article  Google Scholar 

  17. L. Jones, P. Seller, M. Wilson, et al., Nucl. Inst. and Meth. in Phys. Res. A, 604, 34–37 (2009); DOI: https://doi.org/10.1016/j.nima.2009.01.046.

  18. X. Llopart, R. Ballabriga, M. Campbell, et al., Nucl. Inst. and Meth. in Phys. Res. A, 581, 485–494 (2007); DOI: https://doi.org/10.1016/j.nima.2007.08.079.

  19. A. Butler, P. Butler, S. Bell, et al., Phys. Part. Nuclei Lett., 12, 59–73 (2015); DOI: https://doi.org/10.1134/S1547477115010021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tyazhev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyazhev, A.V., Vinnik, A.E., Zarubin, A.N. et al. Multi-Spectral X-Ray Detectors for Nondestructive Testing of 3D Printed Polymer Composites. Russ Phys J 66, 771–778 (2023). https://doi.org/10.1007/s11182-023-03004-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03004-0

Keywords

Navigation