Skip to main content
Log in

Peculiarities of Microcrack Propagation in Substructures

  • Published:
Russian Physics Journal Aims and scope

Using the method of transmission electron microscopy (TEM) of thin foils, nucleation and propagation of microckracks are studied in different plastic zone structures. An interrelation between the fine structure around the microcracks and the types and parameters of the dislocation substructure formed by the point of fracture of the material, i.e. its low-stability state in the vicinity of a structural transformation into a state with cracks is found out. The main factors characterizing the dislocation density in the substructures are identified. These factors are the misorientation boundaries of various origins and long-range stress fields. The changes of the plastic zone structure and its parameters are examined from the mactrocrack and its tip inwards the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Botvina, T. B. Petersen, A. P. Soldatenkov, and M. R. Tyutina, Dokl. Earth Sciences, 462(1), 475 (2015).

    Article  ADS  Google Scholar 

  2. L. R. Botvina, A. D. Zavyalov, and I. O. Sineva, Dokl. Earth Sciences, Part 1, 496, 80 (2021).

    Article  Google Scholar 

  3. M. R. Tyutina, L. R. Botvina, and I. O. Sineva, Russ. Metall. (Met.), 2018, No. 7, 671 (2018).

    Article  ADS  Google Scholar 

  4. C. Labergere, A. Rassineux, and K. Saanouni, Finite Elem. Anal. Des., 82, 46 (2014).

    Article  Google Scholar 

  5. H. Quach, J. J. Kim, J. H. Sung, and Y. S. Kim, IOP Conf. Ser.: Science and Engineering, 967, 012032 (2020).

    Google Scholar 

  6. L. Getsov, A. Semenov, S. Semenov, A. Rybnikov, and E. Tikhomirova, Mater. Technol., 49, 773 (2015).

    Google Scholar 

  7. L. Engel und H. Klingele, Rasterelektronenmikroskopische Untersuchungen von Kunststoffschäden, Hanser Publ., München, Wien (1978).

    Google Scholar 

  8. V. S. Ivanova and V. F. Terentiev, Nature of Fatigue [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  9. Metals Handbook: Fractography and Atlas of Fractographs (Ed. Howard E. Boyers), American Society for Metals (1974).

  10. A. M. Leskovskii, S. N. Sakiev, and V. Shmidt, Phys. Fiz. Met. Metalloved., 41, Iss. 3, 637 (1976).

  11. A. M. Leskovskii and A. N. Orlov, Fiz. Met. Metalloved., 541, Iss. 3, 553 (1982).

  12. A. M. Leskovskii, B. L. Baskin, A. Ya. Gorenberg, et al., Fiz. Tverd.Tela, 25, No. 4, 1096 (1983).

    Google Scholar 

  13. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Strength Physics of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

  14. V. V. Rybin, Large Plastic Deformations [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  15. V. I. Trefilov, Yu. V. Mil’man, and R. K. Ivaschenko, Structure, Texture and Mechanical Properties of Deformed Molybdenum Alloys [in Russian], Naukova Dumka, Kiev (1983).

  16. V. S. Ivanova and A. A. Shanyavskii, Quantitative Fractography. Fatigue Failure [in Russian], Metallurgiya, Chelyabinsk (1988).

  17. V. S. Ivanova, Synergetics and Fatigue Failure of Metals [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  18. J. Salsh and H. Margovin, Met. Trans., A14, No.7–3, 1481 (1983).

    Article  Google Scholar 

  19. J. A. Horton and S. M. Ohr., Scr. Met., 16, No. 5, 621 (1982).

  20. J. Hitcshi and Y. Kazuxiko, Met. Trans., A10, No. 12, 1881 (1979).

    Google Scholar 

  21. S. E. Gurevich and L. D. Edidovich, Fatigue and Fracture Toughness [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  22. V. A. Likhachev, Models of Continuum mechanics, ITPM Sib. Br. USSR AS, Novosibirsk (1983).

    Google Scholar 

  23. V. V. Kornyushin, V. I. Trefilov, and S. A. Firstov, Probl. Prochnost., No. 9, 94 (1976).

  24. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, et al., Strain Hardening and Fracture of Polycrystalline Materials [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  25. V. I. Trefilov and S. A. Firstov, Basic and Structural Transformations and Metastable States in Metals [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  26. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, and E. V. Kozlov, Theoretical and Experimental Study of Disclinations [in Russian], FTI, Leningrad (1986).

    Google Scholar 

  27. N. A. Koneva, D. V. Lychagin, L. I. Trishkina, and E. V. Kozlov, Physical Aspects of Forecasting Fracture and Deformation of Heterogeneous Materials [in Russian], FTI, Leningrad (1987).

    Google Scholar 

  28. N. A. Koneva and E. V. Kozlov, Izvestiya VUZov.Fiz., 25, No. 8, 3 (1982).

  29. B. G. Rybin and A. N. Vergazov, Fiz. Met. Metalloved., 43, Iss. 4, 858 (1978).

  30. A. N. Vergazov and V. V. Rybiy, Fiz. Met. Metalloved., 46, Iss. 2, 371 (1978).

  31. A. I. Potekaev, I. I. Naumov, V.V. Kulagina et. al., Low-Stability Metal-Based Nanostructures, NTL Publ., Tomsk (2018).

    Google Scholar 

  32. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structural-Phase Transformations in Low-Stability Metal Systems under Thermal Force Impacts [in Russian], NTL Publ., Tomsk (2015).

    Google Scholar 

  33. A. I. Potekaev, A. A. Klopotov, V. V. Kulagina, Yu. V. Solovieva, and S. G. Anikeev [in Russian], Structure and Properties of TiNi-based Alloys in Pretransitional Low-Stability States [in Russian], NTL Publ., Tomsk (2021).

  34. A. I. Potekaev, A. M. Glezer, V. V. Kulagina, M. D. Starostenkov, and A. A. Klopotoiv, Structure and Proiperties of Intermetallides in Pretransitional Low-Stability States (Ed. A. I. Potekaev) [in Ruaasian], NTL Publ., Tomsk (2019).

  35. G. P. Bakach, L. A. Kornienko, E. F. Dudarev, Metallofizika, 10, No. 3, 85 (1988).

    Google Scholar 

  36. N. A. Koneva, T. V. Cherkasova, L. I. Trishkina, N. A. Popova, V. E. Gromov, and K. V. Aksenova, Dislocation Structure and Dislocation Substructures. Electron Microscopy Methods for Measurements of their Parameters [in Russian], SibGIU, Novokuznetsk (2019).

  37. V. E. Panin, V. V. Fedorov, R. V. Romashov, et al., Synergetics and Fatigue Failure of Metals [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  38. E. V. Kozlov, D. V. Lychagin, L. I. Trishkina, and N. A. Koneva, Strength Physics of Heterogeneous Materials [in Russian], FTI, Leningrad (1988).

    Google Scholar 

  39. L. A. Teplyakova, L. N. Ignatenko, N. F. Kasatkina, Plastic Deformation of Alloys. Structurlaly Inhomogeneous Materials [in Russian], TSU, Tomsk (1987).

  40. L. A. Teplyakova, L. N. Ignatenko, N. A. Koneva, and E. V. Kozlov, Mechanisms of Dynamic Deformation of Materials [in Russian], KPI, Kuybyshev (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Trishkina.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trishkina, L.I., Klopotov, A.A., Potekaev, A.I. et al. Peculiarities of Microcrack Propagation in Substructures. Russ Phys J 66, 416–431 (2023). https://doi.org/10.1007/s11182-023-02956-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02956-7

Keywords

Navigation