Skip to main content
Log in

Synthesis of Technical Ceramics in a Beam of Fast Electrons

  • Published:
Russian Physics Journal Aims and scope

Samples of zirconia-toughened alumina are synthesized in a beam of fast electrons. The initial raw material is an 80%Al2O3–20%(ZrO2–3Y2O3) nanopowder. A separate attention is given to processing of the green-density powder mixture and the compacted powder plates. The trays with the powder samples are displaced in the beam incidence plane at a rate of 1 m/s. In the first case, the synthesized material mainly consists of the corundum (78.7%) and zirconia phases. In the second case, the content of corundum in the powder sample is found to be 16%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Andrievsky and A. V. Ragulya, Nanostructured Materials [in Russian], Academy, Moscow (2005).

    Google Scholar 

  2. A. V. Nikam, B. L. V. Prasad, and A. A. Kulkarni, CrystEngComm, 20, 5091 (2018). DOI https://doi.org/10.1039/C8CE00487K.

    Article  Google Scholar 

  3. A. B. Vorozhtsov, A. S. Zhukov, T. D. Malinovskaya, and V. I. Sachkov, Synthesis of Dispersed Metal Oxide Materials. Book 2. Plasma-chemical method for synthesizing titanium and zirconium oxides, [in Russian], NTL, Tomsk (2014).

  4. Z. Sagdoldina, K. Shestakov, M. Yermolenko, M. Kylyshkanov, M. Podoinikov, B. Rakhadilov, and Y. Kambarov, Coatings, 12, 1658, (2022). DOI https://doi.org/10.3390/coatings12111658.

    Article  Google Scholar 

  5. E. György, A. Perez del Pino, A. Datcu, L. Duta, C. Logofatu, I. Iordache, and A. Duta, Ceram. Int., 42 (14), 16191 (2016). DOI:https://doi.org/10.1016/j.ceramint.2016.07.140.

    Article  Google Scholar 

  6. M. Parashar, V. K. Shukla, and R. Singh, J. Mater Sci: Mater Electron., 31, 3729 (2020). DOI https://doi.org/10.1007/s10854-020-02994-8.

    Article  Google Scholar 

  7. V. G. Ilves, V. S. Gaviko, A. M. Murzakaev, S. Yu Sokovnin, M. A. Uimin, and M. G. Zuev, Ceram. Int., 49 (13), 21848 (2023). DOI https://doi.org/10.1016/j.ceramint.2023.04.007.

    Article  Google Scholar 

  8. H. Yang, B. Wang, H. Zhang, B. Shen, Y. Li, M. Wang, J. Wang, W. Gao, Y. Kang, Lu Li, Y. Dong, J. Li, and Ju Li, Acta Mater., 255, 119038 (2023). DOI https://doi.org/10.1016/j.actamat.2023.119038.

  9. Y. Yang, H. Liu, Z. Wang, Y. Ma, and X. Wang, Ceram. Int., 49 (14), 23558 (2023). DOI https://doi.org/10.1016/j.ceramint.2023.04.190.

    Article  Google Scholar 

  10. H. Nakaishi, T. Yabutsuka, T. Yao, S. Kitao, M. Seto, Wen-Jauh Chen, Y. Shimonishi, S. Yoshida, and S. Takai, Mater. Chem. Phys., 303, 127764 (2023). DOI https://doi.org/10.1016/j.matchemphys.2023.127764.

  11. Q. Zheng, Y. Li, C. Ma, J. Sun, Y. Gao, and H. Li, J. Eur. Ceram., 43 (8), 3788 (2023). DOI https://doi.org/10.1016/j.jeurceramsoc.2023.02.052.

    Article  Google Scholar 

  12. A. M. Claro, C. C. Alves, K. S. dos Santos, E. G. da Rocha, M. de Lima Fontes, G. C. Monteiro, G. S. Gonçalves de Carvalho, J. M. Almeida Caiut, A. Moroz, S. J. Lima Ribeiro, and H. S. Barud, J. of Sol- Gel Sci. Technol., 107 (1), 83 (2023). DOI https://doi.org/10.1007/s10971-022-05990-y.

  13. M. Varga, R. Grundtner, M. Maj, F. Tatzgern, and K.-O. Alessio, Wear, 522, 204700 (2023). DOI https://doi.org/10.1016/j.wear.2023.204700.

  14. O. A. Fouad, M. M. S. Wahsh, G. G. Mohamed, and M. M. El-Dessouky, Mater. Chem. Phys., 301, 127617 (2023). DOI https://doi.org/10.1016/j.matchemphys.2023.127617.

  15. E. N. Lysenko, V. A. Vlasov, E. V. Nikolaev, A. P. Surzhikov, and M. V. Korobeynikov, Mater. Chem. Phys., 302, 127722 (2023). DOI https://doi.org/10.1016/j.matchemphys.2023.127722.

  16. E. Lysenko, V. Vlasov, E. Nikolaev, A. Surzhikov, and S. Ghyngazov, Materials, 16 (2), 604 (2023). DOI https://doi.org/10.3390/ma16020604.

    Article  ADS  Google Scholar 

  17. A. P. Surzhikov, E. V. Nikolaev, E. N. Lysenko, S. A. Nikolaeva, D. Z. Karabekova, and A. S. Ghyngazov, Russ. Phys. J., 63 (5), 894 (2020). DOI https://doi.org/10.1007/s11182-020-02114-3.

    Article  Google Scholar 

  18. V. G. Kostishin, R. I. Shakirzyanov, A. G. Nalogin, S. V. Shcherbakov, I. M. Isaev, M. A. Nemirovich, M. A. Mikhailenko, M. V. Korobeinikov, M. P. Mezentseva, and D. V. Salogub, Phys. Solid State, 63 (3), 435 (2021). DOI: https://doi.org/10.1134/S1063783421030094.

    Article  ADS  Google Scholar 

  19. I. M. Isaev, S. V. Shcherbakov, V. G. Kostishin, A. G. Nalogin, V. V. Mokljak, B. K. Ostafijchuk, A. A. Alekseev, V. V. Korovushkin, E. A. Belokon’, M. V. Kalinyuk, M. A. Mihaylenko,

  20. M. V. Korobeynikov, A. A. Bryazgin, and D. V. Salogub, Russ. Microelectron., 48 (8), 531 (2019). DOI:https://doi.org/10.1134/S1063739719080079.

    Article  Google Scholar 

  21. 20. E. N. Lysenko, V. A. Vlasov, A. P. Surzhikov, S. A. Ghyngazov, Russ. Phys. J., 65 (11), 1886 (2023). DOI https://doi.org/10.1007/s11182-023-02847-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghyngazov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyngazov, S.A., Vasil’ev, I.P., Boltueva, V.A. et al. Synthesis of Technical Ceramics in a Beam of Fast Electrons. Russ Phys J 66, 391–397 (2023). https://doi.org/10.1007/s11182-023-02952-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02952-x

Keywords

Navigation