Skip to main content
Log in

WC-8Co and WC–5TiC–10Co Cemented Carbides Synthesized by Vacuum-Free Electric Arc Method

  • Published:
Russian Physics Journal Aims and scope

The paper presents experimental results of the tungsten carbide powder synthesis using the vacuum-free electric arc method and its application as a hard-alloy component. It is shown that the synthesized product consists of WC and W2C phases, and its pure form cannot be obtained by spark plasma sintering at 1200°C. When titanium and cobalt carbide sinter additives are introduced in the initial mixture to obtain equivalents of commercial hard alloys (WC–8Co and WC–5TiC–10Co), their hardness is not lower than that of hard alloys based on other raw materials. It is thus shown that the tungsten carbide powder synthesized by the vacuum-free electric arc method can be used for the production of cemented carbides and construction materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tripathy, C. Sudha, V. T. Paul, et al., Int. J. Refract. Met. Hard Mater., 104, 105804 (2022).

    Article  Google Scholar 

  2. L. C. Agudelo-Morimitsu, J. De La Roche, D. Escobar, et al., Ceram. Int., 39, 7355 (2013).

    Article  Google Scholar 

  3. L. Haus, M. Wildfeuer, J.-E. Grochowski, et al., Wear, 488, 204146 (2022).

    Article  Google Scholar 

  4. H. Zhang and D. Y. Li, Wear, 255, 924 (2003).

    Article  Google Scholar 

  5. V. Chitra, S. Ramachandran, and V. Anandaraj, Mater. Today Proc., 47, 4558 (2021).

    Article  Google Scholar 

  6. G. Zambrano, P. Prieto, F. Perez, et al., Surf. Coat. Technol., 108, 323 (1998).

    Article  Google Scholar 

  7. H. Zhang, X. Yu, Z. Nie, et al., Surf. Coat. Technol., 344, 85 (2018).

    Article  Google Scholar 

  8. V. V. Dushik, N. V. Rozhanskii, V.O. Lifshits, et al., Mater. Lett., 228, 164 (2018).

    Article  Google Scholar 

  9. G. E. Remnev, V. V. Uglov, V. I. Shymanski, et al., Appl. Surf. Sci., 310, 204 (2014).

    Article  ADS  Google Scholar 

  10. Z. Fenggang, Vacuum, 159, 254 (2019).

    Article  ADS  Google Scholar 

  11. F. Zhu, Z. Chen, K. Liu, et al., Vacuum, 157, 45 (2018).

    Article  ADS  Google Scholar 

  12. K. G. Kirakosyan, K. V. Manukyan, S. L. Kharatyan, et al., Mater. Chem. Phys., 110, 454 (2008).

    Article  Google Scholar 

  13. S. Tanaka, I. Bataev, H. Oda, et al., Adv. Powder Technol., 29, 2447 (2018).

    Article  Google Scholar 

  14. A. Pak, A. Sivkov, I. Shanenkov, et al., Int. J. Refract. Met. Hard Mater., 48, 51 (2015).

    Article  Google Scholar 

  15. H. Y. Mehrabani, A. Babakhani, and J. Vahdati-Khaki, J. Alloys Compd., 781, 397 (2019).

    Article  Google Scholar 

  16. R. M. T. Fernique, S. Savoie, M. Gariépy, et al., Ceram. Int., 46, 1736 (2020).

    Article  Google Scholar 

  17. K.-F. Wang, G.-D. Sun, Y.-D. Wu, et al., J. Alloys Compd., 784, 362 (2019).

    Article  Google Scholar 

  18. T. Dash and B. B. Nayak, Ceram. Int., 2019, 45, 4771 (2019).

    Article  Google Scholar 

  19. Y. Saito, T. Matsumoto, and K. Nishikubo, J. Cryst. Growth, 172, 163 (1997).

    Article  ADS  Google Scholar 

  20. N. Arora and N. N. Sharma, Diam. Relat. Mater., 50, 135 (2014).

    Article  ADS  Google Scholar 

  21. Y. Su, H. Wei, T. Li, et al., Mater. Res. Bull., 50, 23 (2014).

    Article  Google Scholar 

  22. A. Y. Pak, P. S. Grinchuk, A. A. Gumovskaya, et al., Ceram. Int., 48, 3818 (2022).

    Article  Google Scholar 

  23. A. Y. Pak, V. Sotskov, A. A. Gumovskaya, et al., NPJ Comput. Mater., 9 (2023).

  24. A. V. Zaikovskii, V. A. Mal’tsev, and S. A. Novopashin, J. Eng. Thermophys., 19, 94 (2010).

  25. S. Q. Zhao, S. W. Jin, and Y. X. Wang, Mod. Phys. Lett. B, 27, 1341003 (2013).

    Article  ADS  Google Scholar 

  26. I. Zhirkov, P. Polcik, S. Kolozsvári, et al., J. Appl. Phys., 121, 103305 (2017).

    Article  ADS  Google Scholar 

  27. A. Y. Pak, A. A. Gumovskaya, S. A. Yankovskii, et al., Solid Fuel Chem., 56, 199 (2022).

    Article  Google Scholar 

  28. Y. Cheng, T., Zhu, Y. Li, et al., Ceram. Int., 47, 11793 (2021).

  29. B. Wang, Z., Wang, Z., Yin, et al., Ceram. Int., 45, 19737 (2019).

  30. I. Y. Buravlev, O. O. Shichalin, E. K. Papynov, et al., Int. J. Refract. Hard Met., 94, 105385 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Skripnikova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volokitin, O.G., Skripnikova, N.K., Gumovskaya, A.A. et al. WC-8Co and WC–5TiC–10Co Cemented Carbides Synthesized by Vacuum-Free Electric Arc Method. Russ Phys J 66, 334–340 (2023). https://doi.org/10.1007/s11182-023-02944-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02944-x

Keywords

Navigation