Skip to main content
Log in

Stresses in the Reaction Zone During Composite Synthesis

  • Published:
Russian Physics Journal Aims and scope

Stresses in the reaction zone accompanying the composite formation in the combustion synthesis mode are analyzed in the article. It is assumed that a complex of chemical reactions occurring in this case can be described by two stages, and the stresses accompanying the synthesis can be divided into thermal and concentration ones. The coupled model includes effective reaction parameters and effective heat capacity depending on the ratio of thermal and mechanical scales. It is shown that for a finite size sample, the integral terms in the thermal conductivity equation corresponding to the mechanical equilibrium conditions are significant in the model. The dynamics of stress and strain varies at different stages of the synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Rogachev and A. S. Mukasyan, Combustion for Material Synthesis, CRC Press, Boca Raton (2014).

    Book  Google Scholar 

  2. W. E. Brown, D. Dollimore, and A. K. Galwey, in: Comprehensive Chemical Kinetics, Vol. 22, C. H. Bamford and F. H. Tipper, eds., Elsevier Scientific Publishing Company, Amsterdam (1980).

  3. M. Alrbaihat, F. Kh. Al-Zeidaneen, and Qu. Abu-Afifeh, Mater. Today: Proc., 65, No. 8, 3651–3656 (2022); https://doi.org/10.1016/j.matpr.2022.06.195.

  4. E. V. Boldyreva, React. Solids, 8, No. 3–4, 269–282 (1990); https://doi.org/https://doi.org/10.1016/0168-7336(90)80025-F.

    Article  Google Scholar 

  5. E.-S. Oh, J. R. Walton, D. C. Lagoudas, et al., Acta Mech., 181, 231–255 (2006); DOI https://doi.org/10.1007/s00707-005-0281-8.

  6. S. Sehr, V. Collier, F. Zok, et al., J. Mech. Phys. Solids, 175, 105275 (2023); https://doi.org/10.1016/j.jmps.2023.105275.

  7. A. Mukhopadhyay and B. W. Sheldon, Prog. Mater. Sci., 63, 58–116 (2014); https://www.sciencedirect.com/science/article/pii/S0079642514000139.

  8. Md. R. B. Mamtaz, X. Michaud, H. Jo, and S. S. Park, Int. J. Precis. Eng. Manuf. - Green Tech. (2023); https://doi.org/10.1007/s40684-023-00519-2.

  9. V. A. Polyanskiy, A. K. Belyaev, A. M. Polyanskiy, et al., Phys. Mesomech., 25, No. 5, 404–412 (2022); DOI: https://doi.org/10.1134/S1029959922050034.

    Article  Google Scholar 

  10. Y. Huang, Zh. Liu, M. Song, et al., Comput. Mater. Sci., 218, 111991 (2023); https://doi.org/10.1016/j.commatsci.2022.111991.

  11. P. Grigoreva, E. N. Vilchevskaya, and W. H. Müller, in: Advances in Mechanics of Microstructured Media and Structures, Vol. 87, Francesco dell’Isola, Victor A. Eremeyev, and Alexey Porubov, eds., Springer International Publishing AG (2018), pp. 157–183; https://doi.org/10.1007/978-3-319-73694-5_10.

  12. M. Poluektov, A. B. Freidi, and Ł. Figiel, Int. J. Eng. Sci., 128, 44–62 (2018); https://doi.org/https://doi.org/10.1016/j.ijengsci.2018.03.007.

    Article  Google Scholar 

  13. I. Gyarmati, Non-Equilibrium Thermodynamics. Field Theory and Variational Principles, Springer-Verlag, New York (1970).

    Book  Google Scholar 

  14. Th. Donder and P. V. Rysselberghe, Thermodynamic Theory of Affinity: A Book of Principles, Stanford University Press, California (1936).

    Google Scholar 

  15. E. N. Vilchevskaya, A. B. Freidin, and N. F. Morozov, Dokl. Phys., 60, 175–179 (2015); https://doi.org/https://doi.org/10.1134/S1028335815040072.

    Article  ADS  Google Scholar 

  16. L. Favergeon, J. Morandini, M. Pijolat, et al., HAL Open Science, 68, No. 6, 1039–1048 (2013); https://doi.org/10.2516/ogst/2012018.hal-00907828.

  17. L. A. Perez-Maqueda, J. M. Criado, and P. E. Sanchez-Jimenez, J. Phys. Chem. A, 110, 12456–12462 (2006); https://doi.org/https://doi.org/10.1021/jp064792g.

    Article  Google Scholar 

  18. X. Liu, H. Li, and M. Zhan, Manuf. Rev., 5, No. 10, 1–18 (2018); https://doi.org/https://doi.org/10.1051/mfreview/2018008.

    Article  Google Scholar 

  19. L. Dong, I. Mazzarino, and A. Alexiadis, Chem. Eng., 5, 36–31 (2021); https://doi.org/https://doi.org/10.3390/chemengineering5030036.

    Article  Google Scholar 

  20. A. V. Kolubaev, O. V. Sizova, Yu. A. Denisova, et al., Phys. Mesomech., 25, No. 4, 306–317 (2022); https://doi.org/https://doi.org/10.1134/S102995992204004X.

    Article  Google Scholar 

  21. E. A. Kolubaev, V. E. Rubtsov, A. V. Chumaevsky, et al., Phys. Mesomech., 25, No. 6, 479–491 (2022); https://doi.org/https://doi.org/10.1134/S1029959922060017.

    Article  Google Scholar 

  22. A. G. Knyazeva abd N. V. Bukrina, Combust. Theory Model., 26, 152–178 (2022); https://doi.org/10.1080/13647830.2021.1996634.

  23. E. R. Sayfullin and A. G. Knyazeva, Tech. Phys., 67, No. 8, 601–611 (2022); https://doi.org/https://doi.org/10.1134/S1063784222080084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bukrina.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukrina, N.V., Knyazeva, A.G. Stresses in the Reaction Zone During Composite Synthesis. Russ Phys J 66, 298–306 (2023). https://doi.org/10.1007/s11182-023-02939-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02939-8

Keywords

Navigation