Skip to main content
Log in

Modeling of the Effect of Roughness of Contact Surfaces on the Risk of Aseptic Loosening of Endoprosthesis

  • Published:
Russian Physics Journal Aims and scope

Osteoarthritis and osteonecrosis of the femoral head are serious diseases that require surgical treatment (endoprosthetics (EP)). Aseptic loosening of the femoral component of the implant is a consequence of the micro-destruction of bone tissue in the contact area. The mechanical behavior in the zone of contacting materials during EP is determined by the morphology of the surfaces. To study the effect of the roughness of contacting elements, computer modeling was used. A part of the femur with a pin from a superficial endoprosthesis was considered. The mechanical behavior of the model samples was studied under loading similar to the physiological one. Nonlinear features in the mechanical behavior of model samples with different surface roughnesses are revealed. It has been found that the most optimal bone roughness is about 0.2 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sakagoshi, T. Kabata, Y. Umemoto, et al., J. Arthroplasty, 25, 1282–1289 (2010); DOI: https://doi.org/10.1016/j.arth.2009.09.002.

  2. Y. Tyson, C. Hillman, N. Majenburg, et al., Acta Orthop., 92, 143–150 (2021); DOI: https://doi.org/10.1080/17453674.2020.1846956.

  3. J. M. Smolders, A. Hol, T. Rijnders, et al., J. Bone Joint Surg. Br., 92, 1509–1514 (2010); DOI: https://doi.org/10.1302/0301-620X.92B11.24785.

  4. J. C. Webb and R. F. Spencer, J. Bone Joint Surg. Br., 89, 851–857 (2007); DOI: https://doi.org/10.1302/0301-620X.89B7.19148.

  5. S. J. Breusch and H. Malchau, in: The Well-Cemented Total Hip Arthroplasty – Theory and Practice, S. J. Breusch and H. Malchau, eds., Springer Medizin Verlag, Heidelberg (2005), pp. 146–149.

  6. H. Malchau, P. Herberts, T. Eisler, et al., J. Bone Joint Surg. Am., 84, 2–20 (2002); DOI: https://doi.org/10.2106/00004623-200200002-00002.

  7. G. Lewis, J. Biomed. Mater. Res. 38, 155–188 (1997); DOI: https://doi.org/10.1002/(sici)1097-4636(199722)38:2<155::aidjbm10>3.0.co;2-c.

    Article  Google Scholar 

  8. M. Sundfeldt, L. V. Carlsson, C. B. Johansson, et al., Acta Orthop., 77, 177–197 (2006); DOI: https://doi.org/10.1080/17453670610045902.

  9. K. Mohemi, T. Ahmadi, A., Jafarzadeh, et al., Phys. Mesomech., 25, 85–96 (2022); DOI: https://doi.org/10.1134/S1029959922010106

  10. S. V. Shil’ko, D. A. Chernous, and S. V. Panin, Phys. Mesomech., 26, 93–99 (2023); DOI: https://doi.org/10.1134/S1029959923010101.

  11. B. Lennon, J. R. Britton, R. F. MacNiocaill, et al., J. Orthop. Res., 25, 779–788 (2007); DOI: https://doi.org/10.1002/jor.20346.

  12. G. M. Eremina and A. Yu. Smolin, Comput. Methods Programs Biomed., 200, 105929 (2021); DOI: https://doi.org/10.1016/j.cmpb.2021.105929.

  13. Yu. Smolin, E. V. Shilko, S. V. Astafurov, et al., Def. Technol., 14, 643–656 (2018); DOI: https://doi.org/10.1016/j.dt.2018.09.003.

  14. S. Grigoriev, A. V. Zabolotskiy, E. V. Shilko, et al., Materials, 14, 7376 (2021); DOI: https://doi.org/10.3390/ma14237376.

    Article  ADS  Google Scholar 

  15. S. G. Psakhie, A. V. Dimaki, E. V. Shilko, and S. V. Astafurov, Int. J. Numer. Methods Eng., 106, 623–643 (2016); DOI: https://doi.org/10.1002/nme.5134.

    Article  Google Scholar 

  16. N. Madrala and J. Nuño, Biomed. Mat. Res. B: Appl. Biomat., 93, 258–265 (2010); DOI: https://doi.org/10.1002/jbm.b.31583.

    Article  Google Scholar 

  17. D. R. Carter and W. C. Hayes, J. Bone Joint Surg., 59(7), 954–962 (1977).

    Article  Google Scholar 

  18. S. C. Cowin and S. B. Doty, Tissue Mechanics, Springer, New York (2007).

    Book  MATH  Google Scholar 

  19. M. Wang, N. Yang, and X. Wang, Med. Biol. Eng. Comput., 55, 1895–1914 (2017); DOI: https://doi.org/10.1007/s11517-017-1701-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Smolin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolin, A.Y., Eremina, G.M. Modeling of the Effect of Roughness of Contact Surfaces on the Risk of Aseptic Loosening of Endoprosthesis. Russ Phys J 66, 199–204 (2023). https://doi.org/10.1007/s11182-023-02925-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02925-0

Keywords

Navigation