Skip to main content
Log in

Thermodynamics of Fullerene C60 in a Magnetic Field

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

The thermodynamics of fullerene C60 in a magnetic field is examined. A theoretical description based on models of the classical particle dynamics is used. The angular velocity of the fullerene in the magnetic field is found. An analogue of a gas thermometer is used to determine the temperature, with helium as the filling medium for the thermometer. The magnetocaloric effect of the fullerene is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Yu, M. Liu, P. W. Egolf, and A. A. Kitanovski, Int. J. Refrig., 33, 1029 (2009).

    Article  Google Scholar 

  2. A. Kitanovski, U. Plaznik, U. Tomc, and A. Poredoš, Int. J. Refrig., 57, 288 (2015).

    Article  Google Scholar 

  3. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications. 1st ed., IOP Publ. (2003).

  4. A. Kitanovski, J. Tušek, U. Tomc, et al., Magnetocaloric Energy Conversion: From Theory to Applications. 1st ed., Springer (2015).

  5. C. Aprea, A. Greco, and A. Maiorino, Int. J. Energy Res., 37(12), 1475 (2013).

    Article  Google Scholar 

  6. J. A. Lozano, M. S. Capovilla, P. V. Trevizoli, et al., Int. J. Refrig., 68, 187 (2016).

    Article  Google Scholar 

  7. F. P. Fortkamp, D. Eriksen, K. Engelbrecht K, et al., Int. J. Refrig., 91, 46 (2018).

  8. B. Sieklucka and D. Pinkowicz, Molecular Magnetic Materials: Concepts and Applications, Wiley-VCH (2017).

  9. J. Schnack, Contemp. Phys., 60, 127 (2019).

    Article  ADS  Google Scholar 

  10. E. Coronado, Nat. Rev. Mater., 1–18 (2019).

  11. V. Chaudhary and R. Ramanujan, Sci. Rep., 6, 35156 (2016).

    Article  ADS  Google Scholar 

  12. T. Gottschall, K. P. Skokov, M. Fries, et al., Adv. Energy Mater., 9(34), 1970130 (2019).

    Article  Google Scholar 

  13. R. L. Hadimani, S. Gupta, S. M. Harstad, et al., IEEE Trans. Magn., 51, 2504104 (2015).

    Article  Google Scholar 

  14. J.-L. Zhao, J. Shen, H. Feng-Xia, et. al., J Appl. Phys., 107, 113911 (2010).

    Article  ADS  Google Scholar 

  15. A. I. Zvonov, N. Y. Pankratov, and D. Karpenkov, Solid State Phenom., 233234, 196 (2015).

    Article  Google Scholar 

  16. J. W. Sharples, D. Collison, E. J. L. McInnes, et al., Nat. Commun., 5, 1–6 (2014).

    Article  Google Scholar 

  17. C. Ciccarelli, R. P. Campion, B. L. Gallagher, et al., Appl. Phys. Lett., 108, 053103 (2016).

    Article  ADS  Google Scholar 

  18. D. I. Bradley, A. M. Guenault, D. Gunnarsson, et al., Sci. Rep., 7, 1–9 (2017).

    Article  Google Scholar 

  19. M. Evangelisti and E. K. Brechin, Dalton Trans., 39, 4672 (2010).

    Article  Google Scholar 

  20. E. Garlatti, S. Carretta, J. Schnack, et al., Appl. Phys. Lett., 103, 202410 (2013).

    Article  ADS  Google Scholar 

  21. J. L. Liu, Y. C. Chen, F. S. Guo, et al., Coord. Chem. Rev., 281, 26 (2014).

    Article  Google Scholar 

  22. L. Holleis, B. S. Shivaram, and P. V. Balachandran, Appl. Phys. Lett., 114, 222404 (2019).

    Article  ADS  Google Scholar 

  23. M. Gajewski, R. Pełka, M. Fitta, et al., J. Magn. Magn. Mater., 414, 25 (2016).

    Article  ADS  Google Scholar 

  24. W.-P. Chen, L. Qin, A. Camon, et al., Nat. Commun., 9, 2107 (2018).

    Article  ADS  Google Scholar 

  25. J. Schnack, R. Schmidt, and J. Richter, Phys. Rev. B, 76, 054413 (2007).

    Article  ADS  Google Scholar 

  26. S. Pakhira, C. Mazumdar, R. V. Ranganathan, et al., Sci. Rep., 7, 1 (2017).

    Article  Google Scholar 

  27. G. Lorusso, O. Roubeau, and M. Evangelisti, Angew. Chem. Int. Ed., 55, 3360 (2016).

    Article  Google Scholar 

  28. C. Beckmann, J. Ehrens, and J. Schnack, J. Magn. Magn. Mater., 482, 113 (2019).

    Article  ADS  Google Scholar 

  29. V. Borodin, M. Bubenchikov, A. Bubenchikov, D. Mamontov, S. Azheev, and A. Azheev, Crystals, 13, 181 (2023). https://doi.org/10.3390/cryst13020181.

    Article  Google Scholar 

  30. A. M. Bubenchikov, M. A. Bubenchikov, A. S. Chelnokova, D. V. Mamontov, and A. V. Lun-Fu, Crystals, 12, 1179 (2022). https://doi.org/10.3390/cryst12081179.

    Article  Google Scholar 

  31. A. Lun-Fu, V. Borodin, M. Bubenchikov, A. Bubenchikov, and D. Mamontov, Crystals, 12, 521 (2022). https://doi.org/10.3390/cryst12040521.

    Article  Google Scholar 

  32. A. Lun-Fu, M. Bubenchikov, A. Bubenchikov, D. Mamontov, and V. Borodin, J. Phys Condens. Matter, 6;34(12) (2022). https://doi.org/10.1088/1361-648X/ac45b9. PMID: 34937016.

  33. A. V. Lun-Fu, A. M. Bubenchikov, M. A. Bubenchikov, and V. A. Ovchinnikov, Crystals 11, 1197 (2021). https://doi.org/10.3390/cryst11101197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Borodin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, V.I., Bubenchikov, M.A., Nosyrev, O.D. et al. Thermodynamics of Fullerene C60 in a Magnetic Field. Russ Phys J 66, 150–156 (2023). https://doi.org/10.1007/s11182-023-02916-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02916-1

Keywords

Navigation