Skip to main content

Advertisement

Log in

Surface Treatments and Residual Stress: Assessing the Implications for Biocompatibility in Titanium Implants

  • Published:
Russian Physics Journal Aims and scope

The interaction between implanted materials and body tissues at the cellular level is a critical factor for the success of biomedical implants. Surface modifications, including grinding, polishing, abrasive blasting, and chemical etching together with the application of bioactive coatings such as calcium phosphates are commonly employed to improve implant performance. Each surface treatment alters the topology, roughness, and residual mechanical stresses in the material which can affect cellular responses. In this study, we examine the impact of various surface treatments on the surface morphology, stress state, and elemental composition of titanium alloy samples comparable to commercially available implants. The residual stress values, measured using XRD, have been found to be 400 ± 5 MPa for polished samples, 350 ± 10 MPa for rolled samples, 345 ± 5 MPa for abrasive blasted samples, 215 ± 3 MPa for etched samples, and 260 ± 10 MPa for coated samples. Given the potential influence of residual stress gradients on cell behavior, it is important to consider the stress state as a criterion for implant biocompatibility. Further investigation into the relationship between the residual stress and the cellular responses will contribute to the development of more effective implant materials and surface treatments, ultimately enhancing osseointegration and overall implant performance. This study highlights the need for a comprehensive understanding of the role of the residual stress in implant biocompatibility and suggests a novel direction for future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Krishna Alla, K. Ginjupalli, N. Upadhya, et al., Trends Biomater. Artif. Organs, 25 (3), 112 (2011).

  2. H. Shahali, A. Jaggessar, and P. K. D. V. Yarlagadda, Procedia Eng., 174, 1067 (2017).

    Article  Google Scholar 

  3. I. A. Khlusov, N. M. Shevtsova, M. Y. Khlusova, et al., Genes Cells, 6, 55 (2011).

    Google Scholar 

  4. I. A. Khlusov, M. Y. Khlusova, V. F. Pichugin, et. al., Russ. Phys. J., 56, 92 (2013).

    Google Scholar 

  5. I. V. Rodionov, Perspekt. Mater., 6, 45 (2008).

    Google Scholar 

  6. V. P. Mantripragada, B. Lecka-Czernik, N. A. Ebraheim, and A. C. Jayasuriy, J. Biomed. Mater. Res. Part A, 101, No. 11, 3059–3364 (2013).

    Google Scholar 

  7. Q. Chen and G. A. Thouas, Mat. Sci. Eng. R Rep., 87, 1–57 (2015).

    Article  Google Scholar 

  8. M. A. Khimich, K. A. Prosolov, T. Mishurova, et al., Nanomaterials, 11, No. 5, 1159 (2021).

    Article  Google Scholar 

  9. T. Stich, F. Alagboso, T. Křenek, et al., Bioeng. Transl. Med., 7, No. 1, e10239 (2022).

    Article  Google Scholar 

  10. T. Guo, S. Ivanovski, and K. Gulati, Mater. Des, 223, 111110–111119 (2022).

    Article  Google Scholar 

  11. L. Le Guehennec, A. Soueidan, P. Layrolle, and Y. Amouriq, Dent. Mater., 23, No. 7, 844–854 (2007).

    Article  Google Scholar 

  12. X. Liu, P. K. Chu, and C. Ding, Mat. Sci. Eng. R Rep., 47, Nos. 3–4, 49–121 (2004).

    Article  ADS  Google Scholar 

  13. M. Ogiso, M. Yamamura, P. T. Kuo, et al., J. Biomed. Mater. Res., 39 (3), 364–372 (1998).

    Article  Google Scholar 

  14. V. V. Savich, D. I. Saroka and M. G. Kiselev, Modification of the Surface of Titanium Implants and Its Effect on Their Physicochemical and Biomechanical Parameters in Biological Media, Minsk (2012).

  15. K. A. Prosolov, V. V. Lastovka, M. A. Khimich, V. V. Chebodaeva, I. A. Khlusov and Y. P. Sharkeev, Materials, 15(19), 6828 (2022).

    Article  ADS  Google Scholar 

  16. K. A. Prosolov, V. V. Lastovka, O. A. Belyavskaya, et al., Materials, 13 (19), 4449–4469 (2020).

    Article  ADS  Google Scholar 

  17. E. Velasco, L. Monsalve-Guil, A. Jimenez, et. al., J. Oral Implantol., 42 (6), 469–476 (2016).

    Article  Google Scholar 

  18. L. Romano-Brandt, E. Salvati, E. Le Bourhis, et. al., Surf. Coat. Technol., 381, 125142 (2020).

    Article  Google Scholar 

  19. E. R. Urquia Edreira, J. G. C. Wolke, J. te Riet, et. al., Surf. Coat. Technol. 266, 177–182 (2015).

  20. D. R. Jung, R. Kapur, T. Adams, et. al., Crit. Rev. Biotechnol., 21 (2), 111–154 (2001).

    Article  Google Scholar 

  21. M. Ladd and R. Palmer, Structure Determination by X-ray Crystallography. Analysis by X-rays and Neutrons, Springer, New York (2013).

  22. H. M. Rietveld, Acta Crystallogr. 22, 151–152 (1967).

    Article  Google Scholar 

  23. M. Chimmat and D. Srinivasan, Procedia Struct. Integr., 14, 746–757 (2019).

    Article  Google Scholar 

  24. M. Hasegawa, J. Saruta, M. Hirota, et al., Int. J. Molec. Sci., 21 (3), 783–800 (2020).

    Article  Google Scholar 

  25. J. I. Rosales-Leal, M. A. Rodriguez-Valverde, G. Mazzaglia, et. al., Colloids Surf. Physicochem. Eng. Asp., 365 (1), 222–229 (2010).

    Article  Google Scholar 

  26. J. C. Balza, D. Zujur, L. Gil, et. al., IOP Conf. Ser. Mater. Sci. Eng., 45, 012004 (2013).

    Article  Google Scholar 

  27. K. D. Park, B. A. Lee, X. H. Piao, et. al., J. Adv. Prosthodont., 5 (4), 402–408 (2013).

    Article  Google Scholar 

  28. L. K. Kriechbaumer, W. Happak, K. Distelmaier, et. al., J. Orthop. Res. 38 (11), 2464–2473 (2020).

    Article  Google Scholar 

  29. F. Rupp, L. Scheideler, D. Rehbein, et. al., Biomaterials, 25 (7), 1429–1438 (2004).

    Article  Google Scholar 

  30. S. M. Al-Zubaidi, A. A. Madfa, A. A. Mufadhal, et. al., Front. Mater., 7, 106 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Prosolov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosolov, K.A., Khimich, M.A. & Sharkeev, Y.P. Surface Treatments and Residual Stress: Assessing the Implications for Biocompatibility in Titanium Implants. Russ Phys J 66, 116–123 (2023). https://doi.org/10.1007/s11182-023-02912-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02912-5

Keywords

Navigation