Skip to main content
Log in

Thermokinetic Model of a Layer Growth on a Substrate During Electron-Beam Cladding

  • Published:
Russian Physics Journal Aims and scope

The paper describes a model of electron-beam cladding taking into account the gradual growth and shrinkage of the powder layer. The effective properties of the grown layer depend on the porosity and temperature. The calculation algorithm is based on an implicit difference scheme. The surfacing process turns out to be generally non-stationary, which necessitates a more detailed study of the interaction of different phenomena at different stages. The dynamics of the process, the surface layer relief, the porosity and the temperature are shown to depend on such parameters as the electron beam velocity along the surface and the scanning step. Some examples of calculations illustrating the model capabilities are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Lee, W. Jeong, S. H. Chung, K. P. So, and H. J. Ryu, Appl. Surf. Sci., 615, 156364 (2023).

    Article  Google Scholar 

  2. M. A. Obeidi, Results in Eng., 15, 100473 (2022).

    Article  Google Scholar 

  3. A. Mussatto, Results in Eng., 16, 100769 (2022).

    Article  Google Scholar 

  4. Yu. Meng, J. Li, Sh. Zhang, M. Gao, M. Gong, and H. Chen, J. Alloys Compd., 943, 169152 (2023).

    Article  Google Scholar 

  5. E. A. Kolubaev, V. E. Rubtsov, A. V. Chumaevskii, and E. G. Astafurova, Zh. Fizich. Mezomekh., 25, No. 4, 5 (2022).

    Google Scholar 

  6. L. E. Murr, Addit. Manuf., 5, 40 (2015).

    Google Scholar 

  7. M. Armstrong, H. Mehrabi, and N. Naveed, J. Manuf. Process., 84, 1001 (2022).

    Article  Google Scholar 

  8. J. Zhang, B. Songa, Q. Wei, D. Bourell, and Y. Shi, J. Mat. Sci. and Tech., 35, No 2, 270 (2019).

    Article  Google Scholar 

  9. J. Lu and L. Zhuo, Int. J. Refractory Metals and Hard Materials, 111, 106110 (2023).

  10. Hasan S. Fiaz, Casey R. Settle, and Kazunori Hoshino, Sensors and Actuators A, 249, 284 (2016).

    Article  Google Scholar 

  11. I. Shishkovsky, N. Kakovkina, and F. Missemer, IOP Conf. Ser.: Mater. Sci. Eng., 140, 012016 (2016).

    Google Scholar 

  12. M. A. Mahmood, F. Gh. Alabtah, Y. Al-Hamidi, and M. Khraisheh, Materials and Design, 226, 111658 (2023).

    Article  Google Scholar 

  13. Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Progress in Mater. Sci., 116, 100736 (2021).

    Article  Google Scholar 

  14. W. Han, L. Kong, and M. Xu, Int. J. Extreme Manuf., 4, 042002 (2022).

    Article  Google Scholar 

  15. J. Sun, D. Ye, Ji Zou, X. Chen, Y. Wang, J. Yuan, H. Liang, H. Qu, J. Binner, and J. Bai, J. Mater. Sci. Technol., 138, 1 (2023).

  16. C. Han, R. Babicheva, J. D. Q. Chua, U. Ramamurty, Shu B. Tor, Chen-Nan Sun, and K. Zhou, Addit. Manuf., 36, 101466 (2020).

  17. O. F. Ochonogor, C. Meacock, M. Abdulwahab et al., Appl. Surf. Sci., 263, 591 (2012).

    Article  ADS  Google Scholar 

  18. M. J. Hamedy, M. J. Sabbaghzadeh, and J. Torkamany, Optics and Lasers in Eng., 49, 557 (2011).

    Article  ADS  Google Scholar 

  19. M. Krinitcyn, G. Pribytkov, V. Korzhova, and I. Firsina, Surf. Coat. Technol., 358, 706 (2019).

    Article  Google Scholar 

  20. B. Cheng and K. Chou, in: Proc. 26th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 1182–1194 (2015).

  21. B. Cheng and K. Chou, in: Proc. 24th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 644–654 (2013).

  22. J. Xu, P. Kontis, Ru Lin Peng, and J. Moverare, Acta Materialia, 240, 118307 (2022).

    Article  Google Scholar 

  23. E. Li, Z. Zhou, L. Wang, H. Shen, R. Zou, and A. Yu, Powder Technology, 397, 117012 (2022).

    Article  Google Scholar 

  24. J. Romano, L. Ladani, J. Razmi, M. Sadowski, Addit. Manuf., 8, 1–11 (2015).

    Google Scholar 

  25. N. Shen, K. Chou, in: Proc. 23rd Solid Freeform Fabrication Symposium, 774–784 (2012).

  26. S. Sahoo and K. Chou, Addit. Manuf., 9, 14 (2016).

    Google Scholar 

  27. Z. Wang, M. Liu, Zh. Luo, and Zh. Yan, Powder Technology, 415, 118118 (2023).

    Article  Google Scholar 

  28. N. P Lavery, S. G. R. Brown, J. Sienz, J. Cherry, and F. Belblidia, in: Sustainable Design and Manufacturing, SDM-14 Pre-Proceedings, 651–673 (2014),

  29. M. A. Anisimova, A. G. Knyazeva, M. G. Krinitcin, V.V. Fedorov, and I. L. Pobol, High Temp. Mater. Process., 23, No. 1, 1 (2019).

    Article  Google Scholar 

  30. A. G. Knyazeva, J. Appl. Mech. and Tech. Phys., 62, No. 6, 1001 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  31. O. N. Kryukova and A.G. Knyazeva, Bulletin of Perm National Research Polytechnic University. Mechanics [in Russian], 13, 123 (2005).

  32. O. N. Kryukova and A. G. Knyazeva, J. Appl. Mech. and Tech. Phys., 48, 109 (2007).

    Article  ADS  Google Scholar 

  33. A. Knyazeva. Journal of Physics: Conf. Series, 754, 042009 (2016).

    Google Scholar 

  34. G. Tichá, W. Pabst, and D. S. Smith, J. Mater. Sci., 40, No. 18, 5045 (2005).

    Article  ADS  Google Scholar 

  35. A. G. Knyazeva and Yu. P. Sharkeev, AIP Conf. Proceed., 1893, 030105 (2017).

    Google Scholar 

  36. A. Mostafaei, C. Zhao, Y. He, S. Reza Gh., B. Shi, Sh. Shao, N. Shamsaei, Z. Wu, N. Kouraytem, T. Sun, J. Pauza, J. V. Gordon, B. Webler, N. D. Parab, M. Asherloo, Q. Guo, L. Chen k, A. D. Rollett, Curr. Opin. Solid State Mater. Sci., 26, 100974 (2022).

  37. F. Liu, H. Xie, and W. He, J. Mater. Res. Technol., 22, 2819–2843 (2023).

    Article  Google Scholar 

  38. G. Miao, W. Du, Zh. Pei, and Ch. Ma, Addit. Manuf., 58, 103029 (2022).

    Google Scholar 

  39. L. C. Capozzi, A. Sivo, and E. Bassini, J. Mater. Process. Technol., 308, 117706 (2022).

    Article  Google Scholar 

  40. M. D. A. Valentine, V. Dhokia, J. Flynn, S. A. M. McNair, and A. J. G. Lunt, Mater. Today Commun., 35, 105900 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Kryukova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukova, O.N., Knyazeva, A.G. Thermokinetic Model of a Layer Growth on a Substrate During Electron-Beam Cladding. Russ Phys J 66, 66–73 (2023). https://doi.org/10.1007/s11182-023-02906-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02906-3

Keywords

Navigation