Skip to main content
Log in

Effect of the Sliding Speed and Electric Current on the Wear and Contact Layer Structures of the Steel–Steel Friction Couple

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The tribotechnical behavior of the AISI 1020 steel in contact against the quenched AISI 1045 steel under alternating electric current has been studied using the pin-on-disk interface scheme without lubrication. The low electrical conductivity of the contact and its high wear rate at sliding speeds of 5 and 15 m/s are shown. It is found that an increase in the sliding speed causes a slight decrease in the contact electrical conductivity and does not affect the wear intensity. It is established that the surface layer undergoes structural transformation with the formation of a tribolayer. The working surface of the AISI 1020 steel tribolayer is morphologically divided into 2 sectors. This separation indicates different mechanisms of plastic deformation of the surface layer during friction. It is established that the mechanical stresses in the working surface of one sector are relaxed by the formation of a quasi-liquid state. The tribolayer contains FeO and has a composite structure. It is assumed that the quasi-liquid state of the contact layer arises due to the glass transition at temperatures below 300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Kragelsky, M. N. Dobychin, and V. S. Kombalov, Friction and Wear Calculation Methods, Pergamon Press, New York (1982).

    Google Scholar 

  2. L. A. Sosnovskiy, Tribo-Fatigue: Wear-Fatigue Damage and Its Prediction, Springer Verlag, Berlin; Heidelberg (2005).

  3. M. I. Aleutdinova, V. V. Fadin, A. V. Kolubaev, and V. A. Aleutdinova, FWR, 2, 22 (2014).

    Google Scholar 

  4. L. Zhang, Xi Luo, J. Liu, et al., Mater. Lett., 228, 112 (2018).

  5. S. G. Jia, P. Liu, Z. Ren, et al., Wear, 262, 772 (2007).

    Article  Google Scholar 

  6. S. Q. Wang, L. Wang, Y. T. Zhao, et al.,Wear, 306, 311 (2013).

    Article  Google Scholar 

  7. M. I. Aleutdinova and V. V. Fadin, AIP Conf. Proc., 2167, 020012 (2019).

    Google Scholar 

  8. J. P. Tu, X. H. Jie, Z. Y. Mao, and M. Matsumura, Proc. R. Soc. London Ser. A, 369, 557 (1980).

    Article  Google Scholar 

  9. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, Wiley, New York (1977).

    MATH  Google Scholar 

  10. G. Fox-Rabinovich, A. Kovalev, M. Aguirre, et al., Appl. Surf. Sci., 297, 22 (2014).

    Article  ADS  Google Scholar 

  11. J. S. Gershman and N. A. Bushe, Surf. Coat. Technol., 186, 405(2004).

    Article  Google Scholar 

  12. M. Braunovich, V. V. Konchits, and N. K. Myshkin, Electrical Contacts. Fundamentals, Applications, and Technology, CRC Press, New York (2007).

    Google Scholar 

  13. X. C. Ma, G. Q. He, D. H. He, et al., Wear 265, 1087 (2008).

    Article  Google Scholar 

  14. C. T. Kwok, P. K. Wang, H. C. Man, and F. T. Cheng, Int. J. Railw., 3 (1), 19 (2010).

    Google Scholar 

  15. M. Demirel and M. Muratoglu, Mater. Technol., 45, 405 (2011).

    Google Scholar 

  16. A. A. Burenin, L. V. Kovtanyuk, and G. L. Panchenko, J. Appl. Mech. Tech. Phys., 56, 101 (2015).

    Article  Google Scholar 

  17. M. Renouf, H.-P. Cao, and V.-H. Nhu, Tribol. Int., 44, 417 (2011).

    Article  Google Scholar 

  18. M. I. Aleutdinova, Yu. I. Pochivalov, and V. V. Fadin, Mater. Lett., 328, 133050 (2022).

    Article  Google Scholar 

  19. M. I. Ojovan and W. E. Lee, J. Non-Cryst. Solids, 356, 2534 (2010).

    Google Scholar 

  20. L. Wang, Zh. Qiao, Q. Qi, et al., Wear, 494–495, 204254 (2022).

    Article  Google Scholar 

  21. M. I. Aleutdinova, A. V. Kolubaev, and V. V. Fadin, Russ. Phys. J., 65 (6), 1041 (2022).

    Article  Google Scholar 

  22. A. V. Chichinadze, E. D. Braun, N. A. Bushe, et al., Friction, Wear and Lubrication (Tribology and Tribotechnics) [in Russian], Mashinostroenie, Moscow (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Aleutdinova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleutdinova, M.I., Fadin, V.V. Effect of the Sliding Speed and Electric Current on the Wear and Contact Layer Structures of the Steel–Steel Friction Couple. Russ Phys J 66, 1–7 (2023). https://doi.org/10.1007/s11182-023-02897-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02897-1

Keywords

Navigation