Skip to main content

Advertisement

Log in

Influence of the Annealing Temperature on the Grain Structure of V–4Ti–4Cr Alloy after Thermomechanical Treatment with Rolling

  • Published:
Russian Physics Journal Aims and scope

The effect of annealing temperature on the grain structure and microhardness values of the V–4Ti–4Cr alloy after thermomechanical treatment with rolling has been investigated. The specificity of the change in the texture of the V–4Ti–4Cr alloy with an increase in the annealing temperature was studied by x-ray diffraction analysis. Based on the EBSD analysis data, changes in the grain structure after annealing at different temperatures were revealed. The temperature intervals for the implementation of the main processes of relaxation and recrystallization of the alloy under study were revealed. The microband (layered) structural state formed after the rolling stage is characterized by a rolling texture of the {100}<110> type which is stable up to a temperature of 700°C at which partial recovery begins with relaxation of the most defective areas. At 800°C, primary recrystallization processes are activated, which at 900°C cover the entire volume of the material. An equilibrium structural state with no rolling texture is formed after annealing at 1000°C. Secondary recrystallization processes are activated at 1300°C. With an increase in the annealing temperature from 700 to 900°C, the microhardness decreases from 2.3 to 1.75 GPa. No nonequilibrium solid solutions of interstitial atoms were found in the entire annealing temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Muroga, T. Nagasaka, and K. Abe, et al., J. Nucl. Mater., 307311, 547 (2002).

    Article  ADS  Google Scholar 

  2. N. J. Heo, T. Nagasaka, and T. Muroga, J. Nucl. Mater., 325, 53 (2004).

    Article  ADS  Google Scholar 

  3. H. Y. Fu, J. M. Chen, P. F. Zheng, et al., J. Nucl. Mater., 442 (1–3), S336 (2013).

    Article  Google Scholar 

  4. P. F. Zheng, T. Nagasaka, T. Muroga, et al., Fusion Eng. Des., 86 (9–11), 2561 (2011).

    Article  Google Scholar 

  5. J. M. Chen, T. Nagasaka, T. Muroga, et al., J. Nucl. Mater., 374 (1–2), 289 (2008).

    ADS  Google Scholar 

  6. A. N. Tyumentsev, I. A. Ditenberg, K. V. Grinyaev, et al., J. Nucl. Mater., 413 (2), 103 (2011).

    Article  ADS  Google Scholar 

  7. A. N. Tyumentsev, A. D. Korotaev, Y. P. Pinzhin, et al., J. Nucl. Mater., 329, 429 (2004).

    Article  ADS  Google Scholar 

  8. A. J. Schwartz, M. Kumar, and B. L. Adams, Electron Backscatter Diffraction in Materials Science, Springer, New York (2009).

    Book  Google Scholar 

  9. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford (2004).

    Google Scholar 

  10. D. Raabe and K. Lucke, Mater. Sci. Forum., 157162, 597 (1994).

    Article  Google Scholar 

  11. I. A. Ditenberg, A. N. Tyumentsev, I. V. Smirnov, et al., Phys. Mesomech., 22, 496 (2019).

    Article  Google Scholar 

  12. I. A. Ditenberg and A. N.Tyumentsev, Russ. Phys. J., 60 (11), 1993 (2018).

    Article  Google Scholar 

  13. E. V. Kozlov, A. N. Zhdanov, and N. A. Koneva, Phys. Mesomech., 9, 75 (2006).

    Google Scholar 

  14. V. I. Trefilov, I. K. Pokhodnaya, V. F. Moiseev, and A. D. Vasiliev, Phys. Stat. Sol., 59 (2), 843 (1980).

    Article  ADS  Google Scholar 

  15. B. A. Wilcox, in: Refractory Metal Alloys Metallurgy and Technology, Springer, Boston (1968), pp. 1–39.

    Book  Google Scholar 

  16. F. Haessner, Recrystallization of Metallic Materials, Riederer-Verlag, Stuttgart (1978).

    Google Scholar 

  17. J. R. Kennedy, A. E. Davis, A. E. Caballero, et al., Addit. Manuf., 40, 101928 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Smirnov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, I.V., Ditenberg, I.A., Grinyaev, K.V. et al. Influence of the Annealing Temperature on the Grain Structure of V–4Ti–4Cr Alloy after Thermomechanical Treatment with Rolling. Russ Phys J 65, 2231–2237 (2023). https://doi.org/10.1007/s11182-023-02895-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02895-3

Keywords

Navigation