Skip to main content
Log in

Fabrication of Max Phase-Based Gradient Porous Materials from Preceramic Paper

  • Published:
Russian Physics Journal Aims and scope

The paper proposes a new approach to gradient porous composites based on the Ti3Al(Si)C2 MAX phase. This approach is based on the production of preceramic paper with the different content of the powder filler based on MAX phases and their spark plasma sintering. The analysis of the microstructure and phase composition is conducted for these composites. It is shown that the obtained composites have a clear interface between layers with different porosity. It is found that the content of organic components in preceramic paper affects the phase composition of the fabricated composites. The MAX phase content in dense and porous layers is 86 and 56 vol.%, respectively. Microhardness measurements performed in the composite cross-section show the hardness of 600 to 800 HV, depending on the layer porosity and phase composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Barsoum, Prog. Solid State Chem., 28, No. 1–4, 201−281 (2000).

    Article  Google Scholar 

  2. Z. Zhang, et al., J. Eur. Ceram. Soc., 41, No. 7, 3851−3878 (2021).

    Article  MathSciNet  Google Scholar 

  3. A. A. Smetkin and Yu. K. Maiorova, Vestnik Permskogo natsional'nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 17, No. 4 (2015).

  4. A. Zhou, C. A. Wang, and Y. Hunag, J. Mater. Sci., 38, No. 14, 3111−3115 (2003).

    Article  ADS  Google Scholar 

  5. S. N. Perevislov, I. E. Arlashkin, and A. S. Lysenkov, Refract. Ind. Ceram, 62, No. 4, 215–219 (2022).

    Article  Google Scholar 

  6. X. Li, et al., Corros. Sci., 185, 109431 (2021).

    Article  Google Scholar 

  7. N. Pal, et al., Mater. Today: Proceedings, 28, 1386−1391 (2020).

    Google Scholar 

  8. M. Duran and F. N. Tüzün, Int. J. Hydrog. Energy, 46, No. 57, 29216−2922 (2021).

    Article  Google Scholar 

  9. C. Wang, et al., Carbon, 85, 445 (2015).

    Article  Google Scholar 

  10. Z. Sun, et al., J. Am. Ceram. Soc., 93, No. 9, 2591−2597 (2010).

    Article  Google Scholar 

  11. B. Velasco, E. Gordo, and S. A. Tsipas, J. Alloys Compd., 646, 1036−1042 (2015).

    Article  Google Scholar 

  12. M. Potoczek, et al., J. Am. Ceram. Soc., 101, No. 12, 5346−5357 (2018).

    Article  Google Scholar 

  13. C. R. Bowen and T. Thomas, Ceram. Int., 41, No. 9, 12178−12185 (2015).

    Article  Google Scholar 

  14. A. A. Smetkin, V. G. Gilev, M. N. Kachenyuk, and D. S. Vokhmyanin, Refract. Ind. Ceram., 61, No. 1, 55–60 (2020).

    Article  Google Scholar 

  15. S. A. Firstov, et al., Powder Metall. Met. Ceram., 49, No. 7, 414−423 (2010).

    Article  Google Scholar 

  16. S. Baumann, W. A. Meulenberg, and H. P. Buchkremer, J. Eur. Ceram. Soc., 33, No. 7, 1251−1261 (2013).

    Article  Google Scholar 

  17. B. Dermeik, et al., Adv. Eng. Mater., 21, No. 6, 1900180 (2019).

    Article  Google Scholar 

  18. N. Travitzky, et al., J. Am. Ceram. Soc., 91, No. 11, 3477−3492 (2008).

    Article  Google Scholar 

  19. E. B. Kashkarov, et al., Adv. Eng. Mater., 22, No. 6, 2000136 (2020).

    Article  Google Scholar 

  20. D. G. Krotkevich, et al., Ceram. Int., 47, No. 9, 12221−12227 (2021).

    Article  Google Scholar 

  21. E. B. Kashkarov, et al., J. Eur. Ceram. Soc., 42, No. 5, 2062–2072 (2022).

    Article  Google Scholar 

  22. Y. R. Mingazova, et al., J. Phys.: Conf. Ser., 1989, 012031 (2021).

    Google Scholar 

  23. E. P. Sedanova, et al., J. Phys.: Conf. Ser., 1611, 012007 (2020).

    Google Scholar 

  24. C. Grove and D. A. Jerram, Comput. Geosci., 37, No. 11, 1850−1859 (2011).

    Article  ADS  Google Scholar 

  25. S. Wo, et al., Int. J. Appl. Ceram. Technol., 16, No. 6, 2398−2408 (2019).

    Article  MathSciNet  Google Scholar 

  26. Y. C. Zhou, J. X. Chen, and J. Y. Wang, Acta Mater., 54, No. 5, 1317−1322 (2006).

    Article  ADS  Google Scholar 

  27. W. B. Zhou, B. C. Mei, and J. Q. Zhu, Mater. Lett., 59, No. 12, 1547−1551 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Krotkevich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 132–138, December 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krotkevich, D.G., Kashkarov, E.B., Mingazova, Y.R. et al. Fabrication of Max Phase-Based Gradient Porous Materials from Preceramic Paper. Russ Phys J 65, 2186–2192 (2023). https://doi.org/10.1007/s11182-023-02888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02888-2

Keywords

Navigation