Skip to main content

Advertisement

Log in

Regularities of Functional Properties in Stress-Induced Aged Martensite Single Crystals of Ni51Fe18Ga27Co4 Ferromagnetic Alloy

  • Published:
Russian Physics Journal Aims and scope

The effect of plastic deformation during the preliminary superelasticity cycle and/or during the stress-induced martensite aging (SIM-aging) on the two-way shape memory effect (TWSME) and rubber-like behavior (RLB) in β- and (β+γ)-single crystals of Ni51Fe18Ga27Co4 alloy with thermoelastic L21(B2)–10M/14M–L10 martensitic transformations is studied. It is experimentally shown that the SIM-aging along the [110]B2-direction at T = 423 K for 1 hour under a compressive stress of 430 MPa (for β-crystals) and 400 MPa (for (β+γ)-crystals) induces large reversible strains in the stress-free cooling/heating cycles (TWSME) and loading/unloading cycles at T < As (RLB) along the [001]B2-direction which is perpendicular to the [110]B2-direction. The chemical stabilization of L10-martensite in the SIM-aged β-crystals leads to the appearance of TWSME with a reversible strain of εTWSME1 = +8.1% due to the oriented growth of martensite in the thermal cycles and RLB with a reversible strain of εRLB1 = –14.2% caused by the reorienting martensitic variants by the moving twin boundaries in compression. A contribution from the plastic deformation in the preliminary superelasticity cycle and/or in the SIM-aging process in (β+γ)-crystals leads to a combination of chemical and mechanical stabilization of L10-martensite. As a result, in the SIM-aged (β+γ)-crystals, firstly, the TWSME strain (εTWSME2 = +4.5%) is 1.8 times smaller than that in β-crystals. Secondly, the loading/unloading cycles of RLB with a reversible strain of εRLB2 = –13.2% are accompanied by the high critical stress values for reorientation of martensitic variants σcr2 = 55 MPa and dissipation energy ΔGirr2 = 924 J/m3, in contrast to β-crystals for which σcr1 = 12 MPa and ΔGirr1 = 456 J/m3. This is due to the contribution of mechanical stabilization of L10-martensite by the pinning of interphase and twin boundaries by dislocations in SIM-aged (β+γ)-crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka, C. M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge UK (1998).

    Google Scholar 

  2. E. Panchenko, E. Timofeeva, A. Eftifeeva, et al, Scripta Mater., 64, 1 (2019).

    Google Scholar 

  3. K. Otsuka and X. Ren, Mater. Sci. Eng. A, 312, 207 (2001).

    Article  Google Scholar 

  4. V. A. Chernenko, J. Pons, E. Cesari, and I. K. Zasimchuk, Scripta Mater., 50, 225 (2004).

    Article  Google Scholar 

  5. T. Niendorf, P. Krooß, Ch. Somsen, et al., Acta Mater., 89, 298 (2015).

    Article  ADS  Google Scholar 

  6. P. Kadletz, P. Krooß, Yu. Chumlyakov, et al., Mater. Lett., 159, 16 (2015).

    Article  Google Scholar 

  7. E. Panchenko, E. Timofeeva, M. Pichkaleva, et al., Shap. Mem. Superelastic, 6, 29 (2020).

    Article  ADS  Google Scholar 

  8. A. Tokhmetova, N. Larchenkova, E. Panchenko, and Yu. Chumlyakov, Tech. Phys. Lett., 46, No. 6, 621 (2020).

    Article  ADS  Google Scholar 

  9. E. Panchenko, A. Eftifeeva, Y. Chumlyakov, et al., Scripta Mater., 150, 18 (2018).

    Article  Google Scholar 

  10. E. Cingolani, R. Stalmans, et al., Mater. Sci. Eng. A, 268, 109 (1999).

    Article  Google Scholar 

  11. K. Tsuchiya, K. Tateyama, K. Sugino, and K. Marukawa, Scripta Metall. Mater., 32, No. 2, 259 (1995).

    Article  Google Scholar 

  12. S. Kustov, J. Pons, E. Cesari, et al., Acta Mater., 52, 4547 (2004).

    Article  ADS  Google Scholar 

  13. S. Belyaev, N. Resnina, E. Iaparova, et al., J. Alloys Compd., 787, 1365 (2019).

    Article  Google Scholar 

  14. P. Lázpita, E. Villa, F. Villa, and V. Chernenko, Metals, 11, 920 (2021).

    Article  Google Scholar 

  15. R. F. Hamilton, H. Sehitoglu, C. Efstathiou, H. J. Maier, Acta Mater., 55, 4867–(2007).

  16. T. E. Bucheit, S. L. Kumpf, and J. A. Wert, Acta Mater., 43, 4189 (1995).

    Article  Google Scholar 

  17. R. Santamarta, J. Font, J. Muntasell, et al., Scripta Mater., 54, 1985 (2006).

    Article  Google Scholar 

  18. Z. H. Liu, H. Liu, X. X. Zhang, et al., Phys. Lett. A, 329, 214 (2004).

    Article  ADS  Google Scholar 

  19. H. X. Zheng, M. X. Xia, J. Liu, and J. G. Li, J. Alloys Compd., 385, 144 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Tokhmetova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 103–110, December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokhmetova, A.B., Panchenko, E.Y., Kurlevskaya, I.D. et al. Regularities of Functional Properties in Stress-Induced Aged Martensite Single Crystals of Ni51Fe18Ga27Co4 Ferromagnetic Alloy. Russ Phys J 65, 2154–2162 (2023). https://doi.org/10.1007/s11182-023-02884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02884-6

Keywords

Navigation