Skip to main content
Log in

Shape Memory Effect and Superelasticity of [001]-Oriented (TiZrHf)50Ni25Co10Cu15 High-Entropy Alloy Crystals Under Compression

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

For the first time, the shape memory effect (SME) and superelasticity (SE) of [001]-oriented single crystals of a (TiZrHf)50Ni25Co10Cu15 high-entropy alloy (HEA) are studied under compression. SE is observed within a wide temperature range from Ms = 404 K to 530 K. The maximum SE is 4.4%, and the SME is 3%. The (TiZrHf)50Ni25Co10Cu15 HEA single crystals are high-strength materials with the high-temperature SME and SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge UK (1998).

    Google Scholar 

  2. K. Otsuka and X. Ren, Prog. Mater. Sci., 50, Iss. 5, 135 (2005).

  3. G. Firstov, A. Timoshevski, T. Kosorukova, et al., Matec. Web Conf., 33, 06006 (2015).

    Article  Google Scholar 

  4. G. S. Firstov, T. A. Kosorukova, Y. N. Koval, and V. V. Odnosum, Mater. Today Proc., 2S, S499 (2015).

    Article  Google Scholar 

  5. G. S. Firstov, T. A. Kosorukova, Y. N. Koval, and P. A. Verhovlyuk, Shap. Mem. Superelasticity, 1, 400 (2015).

    Article  ADS  Google Scholar 

  6. B. Cantor, I. T.H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A, 375377, 213 (2004).

    Article  Google Scholar 

  7. Y. Zhou, D. Zhou, X. Jin, et al., Sci. Rep., 8, 1 (2018).

    ADS  Google Scholar 

  8. J. W. Yeh, S. K. Chen, S. J. Lin, et al., Adv. Eng. Mater., 6, 299 (2004).

    Article  Google Scholar 

  9. B. Gludovatz, A. Hohenwarter, D. Catoor, et al., Science, 345, 1153 (2014).

    Article  ADS  Google Scholar 

  10. C. H. Chen and Y. J. Chen, Scr. Mater., 162, 18 (2019).

    Article  Google Scholar 

  11. C. H. Chen, Y. J. Chen, and J. J. Shen, Met. Mater. Int., 26, 617 (2020).

    Article  Google Scholar 

  12. E. Acar, H. Tobe, H. E. Karaca, I. Chumlyakov, Mater. Sci. Eng. A, 725, 51 (2018).

    Article  Google Scholar 

  13. S. M. Saghaian, H. E. Karaca, H. Tobe, et al., Acta Mater., 1341, 211 (2017).

    Article  ADS  Google Scholar 

  14. E. Yu. Panchenko, Yu. I. Chumlyakov, N. Yu. Surikov, et al., Russ. Phys. J., 58, No. 11, 1534 (2016).

    Article  Google Scholar 

  15. Yu. Chumlyakov, I. Kireeva, E. Panchenko, et al., J. Alloys Compd., 64, No. 9, 114 (2021).

    Google Scholar 

  16. Y. I. Chumlyakov, I. V. Kireeva, E. Y. Panchenko, et al., Shape Memory Alloys: Properties, Technologies, Opportunities (Eds. N. Resnina and V. Rubanik), Trans. Tech. Publ. Ltd, Switzerland (2015).

  17. J. Yaacoub, W. Abuzaid, F. Brenne, and H. Sehitoglu, Scr. Mater., 185, 43 (2020).

    Article  Google Scholar 

  18. H. C. Lee, Y. J. Chen, and C. H Chen, Entropy, 21, No. 1027, 1 (2019).

    ADS  Google Scholar 

  19. P. Wollants, J. R. Ross, and L. Delaey, Prog. Mater. Sci., 37, Iss. 3, 227 (1993).

  20. L. Daroczi, S. Palanki, S. Szabo, and D. L. Beke, Mater. Sci. Eng. A, 378, Iss. 1, 274 (2004).

  21. H. C. Tong and C. M. Wayman, Acta. Metall., 22, Iss. 7, 887 (1974).

  22. Z. Palanki, L. Daroczi, and D. L. Beke, Mater. Trans., 46, Iss. 5, 978 (2005).

  23. I. V. Kireeva, C. Picornall, J. Pons, et al., Acta Mater., 68, 127 (2014).

    Article  ADS  Google Scholar 

  24. A. Kelly, Strong Solids, Clarendon Press (1986).

  25. Yu. I. Chumlyakov, I. V. Kireeva, Z. V. Pobedennaya, et al., J. Alloys Compd., 856, Art. 158158 (2021).

  26. H. Sehitoglu, R. Hamilton, D. Canadinc, et al., Metall. Mater. Trans. A, 34, 5 (2003).

    Article  Google Scholar 

  27. S. M. Saghaian, H. E. Karaca, H. Tobe, et al., Acta Mater., 87, 128 (2015).

    Article  Google Scholar 

  28. D. Wang, Y. Gao, Y. Wang, et al., J. Alloys Compd., 661, 100 (2016).

    Article  Google Scholar 

  29. Y. C. Xu, C. Hu, L. Liu, et al., Acta Mater., 171, 240 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.I. Chumlyakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 87–95, December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumlyakov, Y., Kireeva, I.V., Pobedennaya, Z.V. et al. Shape Memory Effect and Superelasticity of [001]-Oriented (TiZrHf)50Ni25Co10Cu15 High-Entropy Alloy Crystals Under Compression. Russ Phys J 65, 2137–2146 (2023). https://doi.org/10.1007/s11182-023-02882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02882-8

Keywords

Navigation