Skip to main content

Advertisement

Log in

Visualization and Characterization of Pre-breakdown Processes in the Volume of a ZnGeP2 Single Crystal During Parametric Generation of Radiation in the Wavelength Range of 3.5–5 μm when Pumped by Ho:YAG Laser Radiation

  • Published:
Russian Physics Journal Aims and scope

The energy characteristics and the results of visualization of processes occurring in the volume of a crystal recorded with a digital holographic camera have been studied. It is established that the parametric generation efficiency ceases to increase when the pump energy density exceeds 1 J/cm2, and darkening of the laser radiation propagation channel in the crystal volume is observed. It is also shown that the transmission of laser radiation decreases when the energy densities exceed 1 J/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Schunemann, K. T. Zawilski, L.A. Pomeranz, et al., J. Opt. Soc. Am. B, 33, No. 11, D36–D43 (2016).

    Article  Google Scholar 

  2. A. Hemming, J. Richards, A. A. Davidson, et al., Opt. Express, 21, No. 8, 10062–10069 (2013).

    Article  ADS  Google Scholar 

  3. M. V. Haakestad, H. Fonnum, and E. Lippert, Opt. Express, 22, No. 7, 8556–8564 (2014).

    Article  ADS  Google Scholar 

  4. G. Liu, S. Mi, K. Yang, et al., Opt. Lett., 46, No. 1, 82–85 (2021).

    Article  ADS  Google Scholar 

  5. V. A. Parfenov, Laser Microprocessing of Materials [in Russian], Publishing House of Saint Petersburg State Electrotechnical University “LETI”, Saint Peterburg (2011).

  6. S. M. Bobrovnikov, G. G. Matvienko, O. A. Romanovskii, et al., Lidar Spectroscopic Gas Analysis of the Atmosphere [in Russian], Publishing House of the IAO SB RAS, Tomsk (2014).

    Google Scholar 

  7. O. A. Romanovskii, S. A. Sadovnikov, O. A. Kharchenko, et al., Opt. Laser Technol., 116, 43−47 (2019).

    Article  ADS  Google Scholar 

  8. D. A. Bochkovskii, G. G. Matvienko, O. A. Romanovskii, et al., Atm. Ocean. Opt., 25, 166–170 (2012).

    Article  Google Scholar 

  9. A. B. Shigapov and S. D. Jarhamov, Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 3, 58 (2004).

  10. V. V. D’yachenko, S. V. Polovchenko, V. V. Rogovskii, et al., Nauchn. Dialog, No. 7, 6−17 (2012).

  11. A. N. Soldatov, Yu. P. Polunin, A. S. Shumeiko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 10/2, 39–42 (2013).

    Google Scholar 

  12. A. N. Soldatov, YU. P. Polunin, A. V. Vasil’eva, et al., Biotekhnosfera, Nos. 3–4 (21–22), 47–51 (2012).

  13. G. S. Edwards, R. H. Austin, F. E. Carroll, et al., Rev. Sci. Instrum., 74, No. 7, 3207–3245 (2003).

    Article  ADS  Google Scholar 

  14. M. S. Hutson and G. S. Edwards, in: Proc. 26th Int. Free Electron Laser Conf. and 11th FEL User Workshop, Triest, Italy (2004), pp. 648–653.

  15. K. M. Joos, J. H. Shen, D. J. Shetlar, et al., Lasers Surg. Med., 27, No. 3, 191–205 (2000).

    Article  Google Scholar 

  16. M. A. Mackanos, D. Simanovskii, K. M. Joos, et al., Lasers Surg. Med., 39, No. 3, 230–236 (2007).

    Article  Google Scholar 

  17. G. Stoeppler, N. Thilmann, V. Pasiskevicius, et al., Opt. Express, 20, No. 4, 4509–4517 (2012).

    Article  ADS  Google Scholar 

  18. W. B. Telfair, C. Bekker, H. J. Hoffman, et al., J. Refract. Surg., 16, No. 1, 40–50 (2000).

    Article  Google Scholar 

  19. V. V. Dyomin, A. V. Gribenyukov, A. Yu. Davydova, et al., Appl. Opt., 60, No. 4, A296–A305 (2021).

    Article  Google Scholar 

  20. A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, et al., Opt. Mem. Neural Networks, 29, No. 2, 147–156 (2020).

    Article  Google Scholar 

  21. V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, et al., Appl. Sci., 10, No. 2, 442-1–442-10 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Yudin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 80–86, December 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudin, N.N., Vlasov, D.V., Antipov, O.L. et al. Visualization and Characterization of Pre-breakdown Processes in the Volume of a ZnGeP2 Single Crystal During Parametric Generation of Radiation in the Wavelength Range of 3.5–5 μm when Pumped by Ho:YAG Laser Radiation. Russ Phys J 65, 2130–2136 (2023). https://doi.org/10.1007/s11182-023-02881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02881-9

Keywords

Navigation