Skip to main content
Log in

Model of Terahertz Bandpass Filter Based on Ferrofluids

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

The paper proposes the bandpass filter model consisting of the geometric model of a cuvette filled with a magnetic fluid. The proposed model is developed using Navier–Stokes equations, level set method, and Maxwell’s equations. The numerical simulation is used to study the properties of periodic filamentary structures in the ferrofluid locating in the external magnetic field, depending on the magnetic strength and ferrofluid parameters. Transmission spectra are calculated for the broadband terahertz radiation passing through the created periodic structures. The dependences are suggested and reference points are determined for the formation of periodic structures in the ferrofluid occupying the external magnetic field. A qualitative assessment is conducted for transmission spectra of terahertz bandpass filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kaur, A. Hasan, N. Iqbal, et al., J. Sep. Sci., 37, No. 14, 1805–1825 (2014).

    Article  Google Scholar 

  2. M. Faraji, Y. Yamini, and M. Rezaee, J. Iran. Chem. Soc., 7, 1–37 (2010).

    Article  Google Scholar 

  3. S. Odenbach, ed., Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids: Lecture Notes in Physics, Vol. 763, Springer (2009).

  4. L. Vekas, M. Avdeev, and D. Bica, Nanoscience in Biomedicine, Springer, Berlin; Heidelberg; New York (2009).

    Google Scholar 

  5. A. Joseph and S. Mathew, Chem. Plus Chem., 79, No. 10, 1382–1420 (2014).

    MathSciNet  Google Scholar 

  6. S. Gens and B. Derin, Curr. Opin. Chem. Eng., 3, 118–124 (2014).

    Article  Google Scholar 

  7. S. Jakabsky, M. Lovas, A. Mockovciakova, and S. Hredzak, J. Radioanal. Nucl. Chem., 246, No. 3, 543–547 (2000).

    Article  Google Scholar 

  8. A. R. Biedermann, Geochemistry, Geophysics, Geosystems, 20, No. 12, 5650–5666 (2019).

    Article  ADS  Google Scholar 

  9. A. S. Suchilin, I. E. Gribut, and S. A. Golikov, Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 7, No. 4, 41–45 (2011).

    Google Scholar 

  10. T. V. Maksimov, M. Yu. Klyukin, and V. A. Maksimov, Vestnik Kazanskogo tekhnologicheskogo universiteta, 16, No. 5, 167–170 (2013).

    Google Scholar 

  11. D. Yu. Martynova, Vestnik sovremennykh issledovanii, 24, No. 9, 173–176 (2018).

    Google Scholar 

  12. D. A. Baranov and S. P. Gubin, Radioelektronika, nanosistemy, informatsionnye tekhnologii, 1, No. 1–2, 129–147 (2009).

  13. S. Laurent, S. Dutz, U. Hafeli, and M. Mahmoudi, Adv. Colloid Interface Sci., 166, No. 1–2, 8–23 (2011).

    Article  Google Scholar 

  14. M. Mahmoudi, S. Sant, B. Wang, et al., Adv. Drug Deliv. Rev., 63, No. 1–2, 24–46 (2011).

    Article  Google Scholar 

  15. D. A. Usanov, A. E., Postel'ga T. S. Bochkova, and V. N. Gavrilin, Tech. Phys., 61, No. 3, 464–466 (2016).

  16. O. A. Antonyuk, V. F. Kovalenko, B. N. Moldovan, and M. V. Petrichuk, Tech. Phys., 50, 766–770 (2005).

    Article  Google Scholar 

  17. M.-R. Hassan, J. Zhang, and C. Wang, Phys. Fluids, 30, No. 9, 092002-1–092002-13 (2018).

  18. A. Özbey, M. Karimzadehkhouei, S. Yalcin, et al., Microfluid. Nanofluid., 18, 447–460 (2015).

    Article  Google Scholar 

  19. B. A. Jackson, K. J. Terhune, and L. B. King, Phys. Fluids, 29, No. 6, 064105-1–064105-10 (2017).

  20. S. Chen, F. Fan, S. Chang, et al., Opt. Express., 22, No. 6, 6313–6321 (2014).

    Article  ADS  Google Scholar 

  21. M. Shalaby, M. Peccianti, Y. Ozturk, et al., Appl. Phys. Lett., 100, 241107-1–241107-3 (2012).

  22. Z. S. Kochnev, A. I. Knyaz'kova, G. K. Raspopin, A. V. Borisov, and T. A. Meshcheryakova, Russ. Phys. J., 64, No. 11, 2129–2134 (2022).

    Article  Google Scholar 

  23. E. Olsson and G. Kreiss, J. Comput. Phys., 210, No. 1, 225–246 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  24. M.-R. Hassan and C. Wang, Excerpt from the Proceedings of the 2019 COMSOL Conference in Boston, Boston (2019).

  25. N. V. Kolchanov and E. V. Kolesnichenko, Vestnik Permskogo universiteta. Fizika, 4, 37−44 (2017).

    Google Scholar 

  26. E. S. Belyaev, A. I. Ermolaev, E. Yu. Titov, and S. F. Tumakov, Vestnik nauchno-tekhnicheskogo razvitiya, 7, 94 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Kochnev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 3–8, December 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochnev, Z.S., Kistenev, Y.V. & Borisov, A.V. Model of Terahertz Bandpass Filter Based on Ferrofluids. Russ Phys J 65, 2045–2051 (2023). https://doi.org/10.1007/s11182-023-02869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02869-5

Keywords

Navigation