Skip to main content
Log in

Cylindrical Streamers Formed in Air and Nitrogen at Low Pressures

  • Published:
Russian Physics Journal Aims and scope

The results of experimental studies of analogs of columnar red sprites are presented. As is known, the development of sprites is due to the formation of cylindrical streamers at an altitude of 50–100 km from sea level. The velocities of a plasma diffuse jet (PDJ) obtained in a laboratory, which is an analog of a sprite, were measured, and its emission spectra were recorded. Estimates are made of the magnitude of the reduced electric field strength in the PDJ at various distances from the electrodes initiating the discharge. It has been established that the shape and color of the PDJ, which are also cylindrical streamers, at air pressures of 0.2–1.5 Torr corresponds to the color and shape of columnar red sprites. It is shown that the change in the color of diffuse plasma jets is associated with an increase in the reduced electric field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Sentman and E. M. Wescott, Phys. Plasmas, 2, No. 6, 2514–2522 (1995).

    Article  ADS  Google Scholar 

  2. C. J. Rodger, Rev. Geophys., 37, No. 3, 317–336 (1999).

    Article  ADS  Google Scholar 

  3. V. P. Pasko, Plasma Sources Sci. Technol., 16, Art. S13 (2007).

  4. E. Williams, M. Valente, E. Gerken, and R. Golka, in: Sprites, Elves and Intense Lightning Discharges, M. Füllekrug, E. A. Mareev, and M. J. Rycroft, eds., Springer, Dordrecht (2006), pp. 237–251.

  5. M. Füllekrug, E. A. Mareev, M. J. Rycroft, eds., Sprites, Elves and Intense Lightning Discharges, Vol. 225, Springer Science & Business Media (2006).

  6. M. G. McHarg, H. C. Stenbaek-Nielsen, and T. Kammae, Geophys. Res. Lett., 34, Art. L06804 (2007).

  7. T. Kanmae, H. C. Stenbaek-Nielsen, M.G. McHarg, and R. K. Haaland, J. Phys. D: Appl. Phys., 45, No. 27, Art. 275203 (2012).

  8. V. P. Pasko, Y. Yair, and C. L. Kuo, Space Sci. Rev., 168, No. 1, 475–516 (2012).

    Article  ADS  Google Scholar 

  9. M. Singh, P. K. Sharma, and P. P. Pathak, J. Electromag. Anal. Appl., 14, No. 3, 31–37 (2022).

    Google Scholar 

  10. R. C. Franz, R. J. Nemzek, and J. R. Winckler, Science, 249, 48–51 (1990).

    Article  ADS  Google Scholar 

  11. D. D. Sentman, E. M. Wescott, D. L. Osborne, et al., Geophys. Res. Lett., 22, No. 10, 1205–1208 (1995).

    Article  ADS  Google Scholar 

  12. G. P. Garipov, B. A. Khrenov, P. A. Klimov, et al., J. Geophys. Res. Atmos., 118, No. 2 370–379 (2013).

    Article  ADS  Google Scholar 

  13. A. Jehl, T. Farges, and E. Blanc, J. Geophys. Res. Space Phys., 118, 454–461 (2013).

    Article  ADS  Google Scholar 

  14. T. Neubert, N. Østgaard, V. Reglero, et al., Space Sci. Rev., 215, No. 2, 1–17 (2019).

    Article  Google Scholar 

  15. Facebook.com. [Internet] (2021) [Cited January 01, 2021]; Available from: http://www.facebook.com/frankie.lucena.1.

  16. T. Neubert, M. Rycroft, T. Farges, et al., Surv. Geophys., 29, No. 2, 71–137 (2008).

    Article  ADS  Google Scholar 

  17. H. C. Stenbaek-Nielsen, R. Haaland, M. G. McHarg, et al., J. Geophys. Res. Space Phys., 115, Art. A003E12 (2010).

  18. J. Qin, S. Celestin, V. P. Pasko, et al., Geophys. Res. Lett., 40, No.17, 4777–4782 (2013).

    Article  ADS  Google Scholar 

  19. A. Malagon-Romero, J. Teunissen, H. Stenbaek-Nielsen, et al., Geophys. Res. Lett., 47, Art. e2019GL085776 (2020).

  20. V. P. Pasko, J. Qin, and S. Celestin, Surv. Geophys., 34, No. 6, 797–830 (2013).

    Article  ADS  Google Scholar 

  21. Y. Goto, Y. Ohba, and K. Narita, J. Atmos. Electr., 27, No. 2, 105–112 (2007).

    Google Scholar 

  22. É. A. Sosnin, N. Yu. Babaeva, V. Yu. Kozhevnikov, et al., Phys.-Usp., 191, No. 2, 191–210 (2021).

    Article  ADS  Google Scholar 

  23. M. Arcanjo, J. Montanya, M. Urbani, and V. Lorenzo, Geophys. Res. Lett., 48, Art. e2021GL095601 (2021).

  24. D. P. Opaits, M. N. Shneider, P. J. Howard, et al., Geophys. Res. Lett., 37, Art. L14801 (2010).

  25. V. Tarasenko, N. Vinogradov, E. Baksht, and D. Sorokin, J. Atmos. Sci. Res., 05, No. 04, 26–36 (2022).

    Google Scholar 

  26. E. Kh. Baksht, N. P. Vinogradov, and V. F. Tarasenko, Opt. Atmos. Okeana, 35, No. 9, 777–781 (2022).

    Article  Google Scholar 

  27. V. F. Tarasenko, E. Kh. Baksht, and N. P. Vinogradov, Prikl. Fiz., No. 4, 11–17 (2022).

  28. Yu. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin (1991).

    Book  Google Scholar 

  29. H. C. Stenbaek-Nielsen, M. G. McHarg, T. Kanmae, and D. D. Sentman, Geophys. Res. Lett., 34, No. 11, Art. L11105 (2007).

  30. P. Paris, M. Aints, F. Valk, et al., J. Phys. D: Appl. Phys, 38, No. 21, 3894–3899 (2005).

    Article  ADS  Google Scholar 

  31. S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, and A. Yu. Starikovskii, Proc. SPIE “Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures”, 4460, 63−72 (2002).

  32. J. Morrill, E. Bucsela, C. Siefring, et al., Geophys. Res. Lett., 29, No. 10, 1462 (2002).

    Article  ADS  Google Scholar 

  33. V. S. Kuznetsov, V. F. Tarasenko, and É. A. Sosnin, Russ. Phys. J., 62, No. 5, 893–899 (2019).

    Article  Google Scholar 

  34. V. Tarasenko, E. Baksht, V. Kuznetsov, et al., J. Atmos. Sci. Res., 03, No. 04, 28–37 (2020).

    Article  Google Scholar 

  35. V. F. Tarasenko, É. A. Sosnin, V. S. Skakun, et al., Phys. Plasmas, 24, No. 4, Art. 043514 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 155–162, November 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Baksht, E.K., Vinogradov, N.P. et al. Cylindrical Streamers Formed in Air and Nitrogen at Low Pressures. Russ Phys J 65, 1958–1965 (2023). https://doi.org/10.1007/s11182-023-02856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02856-w

Keywords

Navigation