Skip to main content
Log in

Low-Current Discharge in a Flow of Atmospheric-Pressure Argon Under the Formation of Metal Atoms: Electric and Optical Characteristics

  • Published:
Russian Physics Journal Aims and scope

The paper presents the results of a study of the current-voltage characteristics and optical emission spectra of an atmospheric pressure pulsed discharge plasma at a frequency of several tens of kilohertz and a pulse duration of up to 10 μs in the mode of generation of plasma flows containing metal particles. The peculiarity of the plasma generator consists in a combination of the electrode design and the modes of the electric and gas supply to the discharge system. This combination allows a low-current (from 40 mA to 1 A) operation at a sufficiently high voltage of 150 to 200 V, without a transition to the arc discharge mode. These parameters make it possible to generate atomic flows from the melting cathode insert, which are blown out by a jet of working argon gas pumped at a flow rate of 1 l/min beyond the discharge system. The entry of a metal component into the gas-discharge plasma affects the discharge operation parameters and the properties of its optical emission. In the context of this phenomenon, the spectral distributions of the intensity of optical radiation corresponding to the lines of magnesium, indium, and zinc and their time dependence are investigated during the current pulse period as applied to identification of the physical features leading to a stable generation of metal atom flows at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gascón-Garrido, N. Mainusch, H. Militz, et al., Eur. J. Wood Prod., 75, 315 (2017).

    Article  Google Scholar 

  2. J. Hong, A. B. Murphy, B. Ashford, et al., Rev. Mod. Plasma Phys., 4, No. 1, 41614-019-0039-8 (2020).

  3. G. E. Timuda, B. Hermanto, and T. Sudiro, J. Phys.: Conf. Ser., 1191, 012054 (2019).

    Google Scholar 

  4. Yu. G. Morozov, O. V. Belousova, M. V. Kuznetsov, et al., J. Mater. Chem., 22, 11214 (2012).

    Article  Google Scholar 

  5. S. Sampath, J. Therm. Spray Technol., 19, No. 5, 921 (2010).

    Article  ADS  Google Scholar 

  6. T. K. Sindhu, R. Sarathi, and S. R. Chakravarthy, Bull. Mater. Sci., 30, No. 2, 187 (2007).

    Article  Google Scholar 

  7. S. Mitić, J. Philipps, and D. Hofmann, J. Phys. D: Appl. Phys., 49, No. 2, 205202 (2016).

    Article  ADS  Google Scholar 

  8. L. U. Pan, Dong-Wook Kim, Dong-Wha Park, Plasma Sci. Technol., 21, 044005 (2019).

    ADS  Google Scholar 

  9. K. Bobzin, F. Ernst, K. Richardt, et al., Surf. Coat. Technol., 202, 4438 (2008).

    Article  Google Scholar 

  10. O. Galmiz, M. Stupavska, H. Wulff, et al., Open Chem., 13, No. 2, 198 (2015).

    Google Scholar 

  11. A. A. Efimov, G. N. Potapov, A. V. Nisan, and V. V. Ivanov, Results Phys., 7, 440 (2017).

    Article  ADS  Google Scholar 

  12. W. Cheng, C. Hai-Chao, L. Wan-Wan, et al., Chin. Phys. B, 26, No. 2, 025202 (2017).

    Article  ADS  Google Scholar 

  13. P. Siemroth, M. Laux, H. Pursch, et al., IEEE Trans. Plasma Sci., 47, No. 8, 3470 (2019).

    Article  ADS  Google Scholar 

  14. I. G. Kesaev, Cathodic Processes of Electric Arc [in Russian], Nauka, Moscow (1962).

    Google Scholar 

  15. J. Kubásek, D. Dvorský, J. Šedý, et al., Materials, 12, 3745 (2019).

    Article  ADS  Google Scholar 

  16. I. Kim, J. Yun, T. Baldoe, et al., Photon. Res., 8, No. 9, 1409 (2020).

    Article  Google Scholar 

  17. W. Zhang, H. Li, W.Yu. William, and A. Y. Elezzabi, Light Sci. Appl., 9, 121 (2020).

    Article  ADS  Google Scholar 

  18. K. P. Savkin, A. S. Bugaev, V. I. Gushenets, et al., Surf. Coat. Technol., 389, 125578 (2020).

    Article  Google Scholar 

  19. B. B. Alchagirov, P. Kh Dadadshev, F. F. Dyshekova, and D. Z. Elimkhanov, TVT, 52, No. 6, 941 (2014).

    Article  Google Scholar 

  20. Tables of Physical Quantities: reference book (Ed. I.K. Kikoin) [in Russian], Atomizdat, Moscow (1976).

  21. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.9) (2021). Available at: https://physics.nist.gov/asd.

  22. E. Carbone, N. Nader Sadeghi, E. Vos, et al., Plasma Sources Sci. Technol., 24, 015015 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Beloplotov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 11–18, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloplotov, D.V., Bugaev, A.S., Gushenets, V.I. et al. Low-Current Discharge in a Flow of Atmospheric-Pressure Argon Under the Formation of Metal Atoms: Electric and Optical Characteristics. Russ Phys J 65, 1804–1811 (2023). https://doi.org/10.1007/s11182-023-02834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02834-2

Keywords

Navigation